Rapid urbanization has become a common occurrence all over the world, particularly in developing countries, and has thus resulted in various eco-environmental problems. In China, urban land has expanded at an unprecedented rate in the past several decades, and sustainable land urbanization has become an important issue in promoting sustainable development. Hence, scholars have proposed ecological carrying capacity (ECC) as a solution to balance socio-economic development and the ecosystems for achieving sustainable development. In the current work, we explored the spatial influence of ECC on land urbanization and its driving mechanism, using the Wuhan agglomeration as a case study. In the first step, we calculated the ECC at the county level using the ecological footprint method. Then, we applied a combination of kernel density and the “densi-graph method” on the basis of points of interest, in order to identify urbanized areas and to measure land urbanization rates. Finally, we devised spatial models with ECC-based spatial weight matrices to examine the potential spatial interactions or constraints and the influencing factors. Results indicate the following. (1) Land urbanization rates in most counties increased, whereas the average ECC per capita in the Wuhan urban agglomeration decreased from 2010 to 2015; (2) China’s land urbanization is primarily driven by socio-economic development, in which fixed asset investments and urban income present positive influences and agricultural outputs show a negative influence; (3) Spatial interaction was formulated through ECC during the land urbanization process. However, this effect was attenuated in 2010–2015. The findings are beneficial for understanding the regional spatial influence of ECC on urban land urbanization. They should also facilitate the formulation of relevant policies for protecting, restoring, and promoting the sustainable use of terrestrial ecosystems to ultimately achieve coordinated and balanced regional development.