Solar photovoltaic (PV) systems have demonstrated growing competitiveness as a viable alternative to fossil fuel-based power plants to mitigate the negative impact of fossil energy sources on the environment. Notwithstanding, solar PV technology has not made yet a meaningful contribution in most countries globally. This study aims to encourage the adoption of solar PV systems on rooftop buildings in countries which have a good solar energy potential, and even if they are oil or gas producers, based on the obtained results of a proposed PV system. The performance of a rooftop grid-tied 3360 kWp PV system was analyzed by considering technical, economic, and environmental criteria, solar irradiance intensity, two modes of single-axis tracking, shadow effect, PV cell temperature impact on system efficiency, and Texas A&M University as a case study. The evaluated parameters of the proposed system include energy output, array yield, final yield, array and system losses, capacity factor, performance ratio, return on investment, payback period, Levelized cost of energy, and carbon emission. According to the overall performance results of the proposed PV system, it is found to be a technically, economically, and environmentally feasible solution for electricity generation and would play a significant role in the future energy mix of Texas.