Knowledge Management processes present a vital role in improving AI systems and algorithms. Many studies and reviews were carried out to examine the relationship between KM processes and AI systems. However, studies were focusing on specific methods and the impact on some AI algorithms, neglecting the role of other KM processes and how it may affect the AI system to achieve the objective, which reduces the adoption in some organizations. The current study shows the relation between KM processes and AI systems from a higher perspective, giving different options to apply other KM processes for the same AI algorithm to reduce any implementation challenges and enhance the adoption level. The review looks into 16 studies collected from a different database from 2014 to 2019. The main finding of the research was the massive impact of some KM processes like knowledge acquisition and knowledge creation on the different types of AI systems and algorithms to give an additional option for organizations during the implementation. Additionally, the research finds that most of the studies agree on the positive relationship between knowledge management processes and the role-plays to enhance AI systems and algorithms. Finally, the study shows a decrease in the number of researches done for this topic in the selected databases, which can be enhanced by other researchers by examining other databases to increase results accuracy.