In this paper, a mathematical model is presented to identify the direct dynamic coefficients (kxx, kzz, cxx, czz) of a pressurized bearing in a rotor-bearing system. The presented mathematical model for online identification is the result of the application of the algebraic identification approach to a two-degree-of-freedom rotor-bearing model. The proposed identification model requires only the vibration response as the input data. The performance of the model was assessed by theoretically and experimentally testing the proposed identifier at different shaft frequencies and, for the experimental test, a pressurized bearing that has hydrodynamic and hydrostatic characteristics at a support pressure of 10 psi was considered. The working fluid is Chevron GST 32 oil. The results show negligible differences between the vibration response of the experimental rotor and those obtained numerically using the identified direct dynamic coefficients of the pressurized bearing. In addition, it is observed that the algebraic identifier determines the identified parameters in a time less than 0.2 s. The proposed identifier can be used in other types of bearings, which is a great advantage over other identifiers.