Abstract:The ongoing industrialization and modernization period has increased the demand for energy in Viet Nam. This has led to over-exploitation and exhausts fossil fuel sources. Nowadays, Viet Nam's energy mix is primarily based on thermal and hydro power. The Vietnamese government is trying to increase the proportion of renewable energy. The plan will raise the total solar power capacity from nearly 0 to 12,000 MW, equivalent to about 12 nuclear reactors, by 2030. Therefore, the construction of solar power plants is needed in Viet Nam. In this study, the authors present a multi-criteria decision making (MCDM) model by combining three methodologies, including fuzzy analytical hierarchy process (FAHP), data envelopment analysis (DEA), and the technique for order of preference by similarity to ideal solution (TOPSIS) to find the best location for building a solar power plant based on both quantitative and qualitative criteria. Initially, the potential locations from 46 sites in Viet Nam were selected by several DEA models. Then, AHP with fuzzy logic is employed to determine the weight of the factors. The TOPSIS approach is then applied to rank the locations in the final step. The results show that Binh Thuan is the optimal location to build a solar power plant because it has the highest ranking score in the final phase of this study. The contribution of this study is the proposal of a MCDM model for solar plant location selection in Viet Nam under fuzzy environment conditions. This paper also is part of the evolution of a new approach that is flexible and practical for decision makers. Furthermore, this research provides useful guidelines for solar power plant location selection in many countries as well as a guideline for location selection of other industries.