Here we report the composition of biotite from the peraluminous Devonian South Mountain Batholith (SMB) of southwestern Nova Scotia (Canada), the largest intrusive body within the Appalachian orogen. The batholith was emplaced in two phases: an early (379-375 Ma) granodioritemonzogranite suite (Stage 1), and a later (375-372 Ma) more evolved monzogranite-leucogranite suite (Stage 2). Biotite analyses (major and minor elements) were obtained on 55 unmineralized samples representing 11 plutons. Regardless of the stage of pluton emplacement, biotite is commonly interstitial to alkali feldspar, quartz and plagioclase, indicating similar timing of biotite saturation. This suggests that biotite chemistry records conditions at similar extents of magma evolution for the chosen suite of samples. Biotite compositions are Fe-rich, with Fe/(Fe+Mg) ranging from 0.6 to 0.98, and Al-rich, with IV Al ranging from 2.2 to 2.9 atoms per formula unit (apfu; 22 oxygen basis), the latter reflecting the coexistence of other Al-rich phases, such as muscovite, garnet, aluminosilicates and cordierite. Biotite anion sites are dominated by OH (>3 apfu), followed by F (~0.3 apfu) and Cl (< 0.02 apfu), with a general trend of decreasing OH, increasing F and a marked decrease in Cl, with increasing differentiation. Pressure (P) is estimated from the Al content of biotite to be between 280-430 MPa, consistent with a range of 240 to <470 MPa derived from phase equilibria and fluid inclusion microthermometry combined with mineral thermobarometry. Temperature (T) calculated from the Ti content of biotite ranges from 603-722 o C. Comparison of P-T estimates with water-saturated granite phase relations suggest minimum water contents of 6-7 wt% for the SMB magmas. The redox state of the SMB was estimated by comparing biotite Fe#-Ti relations with compositions calculated using the MELTS thermodynamic model, as experiments have shown that biotite Fe# increases with decreasing fO2 at a given extent of crystallization. Results of MELTS modelling for the most primitive magmas of the SMB sample suite indicate that the observed biotite Fe#-Ti variation is consistent with crystallization at FMQ to FMQ-1, with more oxidizing conditions suggested for the most strongly differentiated samples.To constrain the origin of the biotite anion site variation, a quantitative model using biotite-melt exchange coefficients (KD) derived from existing experimental data was used to track the change in This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America.The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press.