Suspended particle size and concentration are critical parameters necessary to understand water quality, sediment dynamics, carbon flux, and ecosystem dynamics among other ocean processes. In this study we detail the integration of a Sequoia Scientific, Inc., Laser In situ Scattering and Transmissometry (LISST) sensor into a Teledyne Webb Research Slocum autonomous underwater glider. These sensors are capable of measuring particle size, concentration, and beam attenuation by particles in size ranges from 1.00 to 500 μm at a resolution of 1 Hz. The combination of these two technologies provides the unique opportunity to measure particle characteristics persistently at specific locations, or survey regional domains from a single profiling sensor. In this study we present the sensor integration framework, detail quality assurance and control (QAQC) procedures, as well as provide a case study of storm driven sediment resuspension and transport. Specifically, Rutgers glider RU28 was deployed with an integrated LISST-Glider for 18 days in September of 2017. During this time period it sampled the nearshore environment off of coastal New Jersey, capturing full water column sediment resuspension during a coastal storm event. A novel method for in situ background corrections is demonstrated and used to mitigate long-term bio-fouling of the sensor windows. Additionally, we present a method for removing Schlieren contaminated time periods utilizing coincident conductivity temperature and depth, fluorometer, and optical backscatter data. The combination of LISST sensors and autonomous platforms has the potential to revolutionize our ability to capture suspended particle characteristics throughout the world’s oceans.