Lineage-restricted transcription factors, such as the intestine-specifying factor CDX2, often have dual requirements across developmental time. Embryonic-loss of CDX2 triggers homeotic transformation of intestinal fate, while adult-onset Cdx2-loss compromises critical physiological functions but preserves intestinal identity. It is unclear how such diverse requirements are executed across the developmental continuum. Using primary and engineered human tissues, mouse genetics, and a multi-omics approach, we demonstrate that divergent CDX2 loss-offunction phenotypes in embryonic versus adult intestines correspond to divergent CDX2 chromatin-binding profiles in embryonic versus adult stages. CDX2 binds and activates distinct target genes in developing versus adult mouse and human intestinal cells. We find that temporal shifts in chromatin accessibility correspond to these context-specific CDX2 activities.Thus, CDX2 is not sufficient to activate a mature intestinal program, but rather, CDX2 responds to its environment, targeting stage-specific genes to contribute to either intestinal patterning or maturity. This study provides insights into the mechanisms through which lineage-specific regulatory factors achieve divergent functions over developmental time.