Accurate prediction of the engine's remaining useful life (RUL) is essential to ensure the safe operation of the aircraft because. However, traditional deep‐learning based methods for RUL prediction has been limited by interpretability and adjustment for hyperparameters in practical applications due to the intricate potential relations during the degradation process. To address these dilemmas, an improved multi‐strategy tuna swarm optimization‐assisted graph convolutional neural network (IMTSO‐GCN) is developed to achieve RUL prediction in this work. Specifically, mutual information is used to describe potential relationships among measured parameters so that they could be utilized in building edges for these parameters. Besides, considering that not all relational nodes will positively affect the RUL prediction and the inherent hyperparameters of the GCN are high‐dimensional. Inspired by “No Free Lunch (NFL)”, IMTSO is proposed to reduce the optimization cost of hyperparameters, in which cycle chaotic mapping is employed to achieve initialization of the population for improving the uniformity of the initial population distribution. Besides, a novel adaptive approach is proposed to enhance the exploration and exploitation of tuna swarm optimization (TSO). The CMAPSS dataset was used to validate the effectiveness and advancedness of IMTSO‐GCN, and the experimental results show that the R2 of the IMTSO‐GCN is greater than 0.99, RMSE is less than 3, the Score error is within 1.