Network slicing, as a key technique of 5G, provides a way that network operators can segment multiple virtual logic on the same physical network and each customer can order specific slicing which can meet his requirement of 5G service. The service level agreement of network slicing (NS-SLA) of 5G, as a business agreement signed between the network operators and the customers, specifies the relevant requirements for the 5G services provided by the network operators. However, the authenticity of auditing results may not be guaranteed and the customer’s data may be leaked in the existing NS-SLA audit scheme. In this paper, a blockchain-based 5G network slicing NS-SLA audit model is proposed to address the above problems. The blockchain is applied as a public platform and all the dual monitored service parameters will be stored on the blockchain to ensure the authenticity of data. A trapdoor order-revealing encryption algorithm is introduced to audit strategy, which can encrypt the monitored parameters, realize the comparison over ciphertexts and prevent the privacy of data from leaking. Besides, an NS-SLA audit smart contract is designed to implement the audit task and execute corresponding punishment strategies automatically. We make experiments to exam the cost of the blockchain-based system and the results found clear support for the feasibility of the proposed model.