Abstract. Cancer stem cells (CSCs; also known as tumor-initiating cells) are essential effectors of tumor progression due to their self-renewal capacity, differentiation potential, tumorigenic ability and resistance to chemotherapy, all of which contribute to cancer relapse, metastasis and a poor prognosis. Breast cancer stem cells (BCSCs) have been identified to be involved in the processes of BC initiation, growth and recurrence. MicroRNAs (miRNAs) are a class of non-coding small RNAs of 19-23 nucleotides in length that regulate gene expression at the post-transcriptional level through various mechanisms, and serve critical roles in cancer progression. miRNAs have been demonstrated to elicit effects on BCSCs characteristics via the targeting of oncogenes or tumor suppressor genes. The present study focused on the effect of miRNAs on BCSC, including BCSC formation, self-renewal and differentiation, by which miRNAs may inhibit BCSC invasion and metastasis, modulate clonogenicity and tumorigenicity of BCSCs as well as regulate chemotherapy resistance to BC. Through an improved understanding of the association between BCSCs and miRNAs, a novel and safer therapeutic target for BC may be identified.