2021
DOI: 10.2991/ijcis.d.210601.001
|View full text |Cite
|
Sign up to set email alerts
|

An Intelligent Hybrid System for Forecasting Stock and Forex Trading Signals using Optimized Recurrent FLANN and Case-Based Reasoning

Abstract: A precise prediction of future market trends is inevitable for traders in stock and foreign exchange market. However, it is a challenging task to have a profound understanding of technical indicators, including market-dominant factors and inherent process mechanism. In order to expedite the trading decision-making process, an intelligent stock trading system is proposed blending dynamic time windows coupled with case-based reasoning (CBR), and recurrent function link artificial neural network (FLANN) optimized… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 17 publications
(2 citation statements)
references
References 33 publications
0
1
0
1
Order By: Relevance
“…Penelitian ketiga membahas tentang Sinyal Trading Forex menggunakan Optimized Recurrent FLANN. Hasil dari penelitian yang dilakukan bahwa metode peramalan terbaik untuk peramalan tren pasar saham dan RFLANN Forex memiliki nilai MAPE paling kecil yaitu 5,37% dibandingkan metode lainnya [6]. Penelitian keempat dilakukan membahas tentang data perdagangan Yahoo Finance.…”
Section: Tinjauan Literaturunclassified
“…Penelitian ketiga membahas tentang Sinyal Trading Forex menggunakan Optimized Recurrent FLANN. Hasil dari penelitian yang dilakukan bahwa metode peramalan terbaik untuk peramalan tren pasar saham dan RFLANN Forex memiliki nilai MAPE paling kecil yaitu 5,37% dibandingkan metode lainnya [6]. Penelitian keempat dilakukan membahas tentang data perdagangan Yahoo Finance.…”
Section: Tinjauan Literaturunclassified
“…The recent studies also show the potential of using TA in fully developed economies [ 22 ]. Recently, the popular approach has been to pre-act prices using neural networks and methods traditionally used in predictions and simulations, combining forecasting and TA [ 23 , 24 , 25 ]. The authors note that combining both methods can be successful and will be the subject of further research by the authors.…”
Section: Related Work and Motivationmentioning
confidence: 99%