2009
DOI: 10.1016/j.eswa.2008.05.029
|View full text |Cite
|
Sign up to set email alerts
|

An intelligent market segmentation system using k-means and particle swarm optimization

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
36
0
2

Year Published

2009
2009
2023
2023

Publication Types

Select...
4
4
1

Relationship

1
8

Authors

Journals

citations
Cited by 100 publications
(38 citation statements)
references
References 9 publications
0
36
0
2
Order By: Relevance
“…It offers benefits such as providing opportunities to expand the market by better satisfying the needs of particular visitors, increasing profitability and effectiveness, fine tuning product offerings and suggesting appropriate distribution and communication channels (Chiu, Chen, Kuo, & Ku, 2009). Other benefits include: clear definition of the visitor (Arrimond & Elfessi, 2001;Fogliatto & Silveira, 2008;Rogerson, & Kotze, 2011), better understanding of the market based on motivation (Alebaki & Iakovidou, 2011;Park & Yoon, 2009;Van Der Wagen, 2005), ability to respond to the markets' changing needs (Farrell & Simpson, 2008;Ferrell, Hartline, & Lucas, 2002;Pegg & Patterson, 2010), identification of niche markets (Brown & Cave, 2010;Getz, 1997;Keller & Kotler, 2006;Park & Yoon, 2009), increasing the cost effectiveness of marketing (Moeller, Dolnicar, & Leisch, 2011;Shin, 2008), innovative ideas (Van Der Wagen, 2005), understanding and assessing the competition (Burke & Resnick, 2000;Dibb & Simkin, 2001;Dolnicar, 2008;Tsiotsou & Ratten, 2010) and developing a sustainable and better positioned product (Bennett & Strydom, 2001;Lee, Lee, & Wicks, 2004;Luo & Deng, 2008;Moeller et al, 2011).…”
Section: Market Segmentation Of Wildflower Viewersmentioning
confidence: 98%
“…It offers benefits such as providing opportunities to expand the market by better satisfying the needs of particular visitors, increasing profitability and effectiveness, fine tuning product offerings and suggesting appropriate distribution and communication channels (Chiu, Chen, Kuo, & Ku, 2009). Other benefits include: clear definition of the visitor (Arrimond & Elfessi, 2001;Fogliatto & Silveira, 2008;Rogerson, & Kotze, 2011), better understanding of the market based on motivation (Alebaki & Iakovidou, 2011;Park & Yoon, 2009;Van Der Wagen, 2005), ability to respond to the markets' changing needs (Farrell & Simpson, 2008;Ferrell, Hartline, & Lucas, 2002;Pegg & Patterson, 2010), identification of niche markets (Brown & Cave, 2010;Getz, 1997;Keller & Kotler, 2006;Park & Yoon, 2009), increasing the cost effectiveness of marketing (Moeller, Dolnicar, & Leisch, 2011;Shin, 2008), innovative ideas (Van Der Wagen, 2005), understanding and assessing the competition (Burke & Resnick, 2000;Dibb & Simkin, 2001;Dolnicar, 2008;Tsiotsou & Ratten, 2010) and developing a sustainable and better positioned product (Bennett & Strydom, 2001;Lee, Lee, & Wicks, 2004;Luo & Deng, 2008;Moeller et al, 2011).…”
Section: Market Segmentation Of Wildflower Viewersmentioning
confidence: 98%
“…Iris plant is a database with 4 numeric attributes, 3 classes and 150 instances. We compared the PSHBMO algorithm with PSO+K-means and SOM+K-means by Chiu [13]. Finally, we provided the clustering results and used three criteria to evaluate the quality of the results as in following table.…”
Section: Experiment-irismentioning
confidence: 99%
“…K-means realiza una búsqueda local en la vecindad de la solución inicial y va refinando la partición resultante, por esta razón se puede utilizar algún algoritmo de búsqueda global para generar los centroides iniciales. El algoritmo de cúmulo de partículas (PSO -Particle Swarm Optimization) es una técnica de optimización estocástica que puede utilizarse para encontrar una soluciónóptima o cercana alóptimo, ha sido aplicado en clustering de datos y de texto con muy buenos resultados [6], [10], [3]. PSO puede utilizarse para generar buenos centroides iniciales para el Kmeans.…”
Section: Introductionunclassified