A number of recent studies of aging in Drosophila, mice and dogs have shown an association between reduced body size and increased lifespan. It is unclear (a) whether such an association is a general feature of animal species; and (b) whether the association reflects an effect of body size on aging, or pleiotropic effects of common determinants of growth and aging. To address these issues, we have studied the relationship between size and lifespan in the nematode Caenorhabditis elegans, and surveyed related findings in Drosophila. In C. elegans, we compared 12 wild isolates with varying body size and lifespan, but saw no correspondence between these traits. We also examined aging in giant and dwarf mutants, but observed only reduced lifespan in all cases. In a comparison of 15 long-lived daf-2 insulin/IGF receptor mutants, we saw a positive correlation between body length and lifespan, and up to a 28% increase in daf-2 mutant body volume. Thus, in C. elegans, insulin/IGF signaling may limit growth rather than promote it. Studies of Drosophila show no consistent correlation between body size and lifespan. These results indicate that the negative correlation between body size and lifespan seen in some mammals is not typical of invertebrates, but support the view that co-variation of size and longevity may occur via effects on insulin/IGF signaling. q