Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study explores neurochemical changes in the brain during hypnosis, targeting the parieto-occipital (PO) and posterior superior temporal gyrus (pSTG) regions using proton magnetic resonance spectroscopy (MRS). We examined 52 healthy, hypnosis experienced participants to investigate how two different hypnotic states of varying depth impacted brain neurochemistry in comparison to each other and to their respective non-hypnagogic control conditions. Alongside neurochemical assessments, we recorded respiration and heart rate variability (HRV) to further explore possible associations between physiological correlates of hypnotic depth. Significant changes in myo-Inositol concentration relative to total creatine were observed in the PO region during the deeper hypnosis state, possibly indicating reduced neuronal activity. No significant neurochemical shifts were detected in the pSTG region. Additionally, our findings revealed notable physiological changes during hypnosis. Respiratory rates were significantly slowed in both hypnotic states compared to the respective controls, with more pronounced slowing in the deeper hypnotic state. This study contributes a first-time insight into neurochemical responses during hypnotic states. We hope offering a foundation for further research in understanding the neurobiological correlates of hypnosis in both, basic science and—down the line—clinical applications. Supplementary Information The online version contains supplementary material available at 10.1038/s41598-024-80795-3.
This study explores neurochemical changes in the brain during hypnosis, targeting the parieto-occipital (PO) and posterior superior temporal gyrus (pSTG) regions using proton magnetic resonance spectroscopy (MRS). We examined 52 healthy, hypnosis experienced participants to investigate how two different hypnotic states of varying depth impacted brain neurochemistry in comparison to each other and to their respective non-hypnagogic control conditions. Alongside neurochemical assessments, we recorded respiration and heart rate variability (HRV) to further explore possible associations between physiological correlates of hypnotic depth. Significant changes in myo-Inositol concentration relative to total creatine were observed in the PO region during the deeper hypnosis state, possibly indicating reduced neuronal activity. No significant neurochemical shifts were detected in the pSTG region. Additionally, our findings revealed notable physiological changes during hypnosis. Respiratory rates were significantly slowed in both hypnotic states compared to the respective controls, with more pronounced slowing in the deeper hypnotic state. This study contributes a first-time insight into neurochemical responses during hypnotic states. We hope offering a foundation for further research in understanding the neurobiological correlates of hypnosis in both, basic science and—down the line—clinical applications. Supplementary Information The online version contains supplementary material available at 10.1038/s41598-024-80795-3.
This study explores neurochemical changes in the brain during hypnosis, targeting the parieto-occipital (PO) and posterior superior temporal gyrus (pSTG) regions using proton magnetic resonance spectroscopy (MRS). We examined 52 healthy, hypnosis experienced participants to investigate how two different hypnotic states of varying depth impacted brain neurochemistry in comparison to each other and to their respective non-hypnagogic control conditions. Alongside neurochemical assessments, we recorded respiration and heart rate variability (HRV) to further explore possible association between physiological correlates of hypnotic depth. Significant myo-Inositol concentration changes were observed in the PO region during the deeper hypnosis state, possibly indicating reduced neuronal activity. No significant neurochemical shifts were detected in the pSTG region. Additionally, our findings revealed notable physiological changes during hypnosis. Respiratory rates were significantly slowed in both hypnotic states compared to the respective controls, with more pronounced slowing in the deeper hypnotic state. Furthermore, breathing rate differed significantly between both hypnosis states with a stronger decrease during the deeper state This study contributes a first-time insight into neurochemical responses during hypnotic states. We hope offering a foundation for further research in understanding the neurobiological correlates of hypnosis in both, basic science and – down the line - clinical applications.
Background/Objectives: Hypnosis shows great potential for managing patients suffering from fibromyalgia and chronic pain. Several studies have highlighted its efficacy in improving pain, quality of life, and reducing psychological distress. Despite its known feasibility and efficacy, the mechanisms of action remain poorly understood. Building on these insights, this innovative study aims to assess neural activity during hypnosis in fibromyalgia patients using high-density electroencephalography (EEG) and self-reported measures. Methods: Thirteen participants with fibromyalgia were included in this study. EEG recordings were done during resting state and hypnosis conditions. After both conditions, levels of pain, comfort, absorption, and dissociation were assessed using a numerical rating scale. Time perception was collected via an open-ended question. The study was prospectively registered in the ClinicalTrials.gov public registry (NCT04263324). Results: Neural oscillations showed increased theta power during hypnosis in the left parietal and occipital electrodes, increased beta power in the frontal and left temporal electrodes, and increased slow-gamma power in the frontal and left parietal electrodes. Functional connectivity using pairwise-phase consistency measures showed decreased connectivity in the frontal electrodes during hypnosis. Graph-based measures, the node strength, and the cluster coefficient were lower in frontal electrodes in the slow-gamma bands during hypnosis compared to resting state. Key findings indicate significant changes in neural oscillations and brain functional connectivity, suggesting potential electrophysiological markers of hypnosis in this patient population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.