We consider the optimistic bilevel optimization problem, known to have a wide range of applications in engineering, that we transform into a single-level optimization problem by means of the lowerlevel optimal value function reformulation. Subsequently, based on the partial calmness concept, we build an equation system, which is parameterized by the corresponding partial exact penalization parameter. We then design and analyze a Levenberg-Marquardt method to solve this parametric system of equations. Considering the fact that the selection of the partial exact penalization parameter is a critical issue when numerically solving a bilevel optimization problem, we conduct a careful experimental study to this effect, in the context the Levenberg-Marquardt method, while using the Bilevel Optimization LIBrary (BOLIB) series of test problems.