2024
DOI: 10.21660/2024.116.g13159
|View full text |Cite
|
Sign up to set email alerts
|

An Interpretable Machine Learning Approach in Understanding Lateral Spreading Case Histories

Emerzon S. Torres

Abstract: Lateral spreading is one of the most common secondary earthquake effects that cause severe damage to structures and lifelines. While there is no widely accepted approach to predicting lateral spread displacements, challenges to the existing empirical and machine learning models include obscurity, overfitting, and reluctance of practical users. This study reveals patterns in the available lateral displacement database, identifying rules that describe the significant relationships among various attributes that l… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 17 publications
0
0
0
Order By: Relevance