2024
DOI: 10.1371/journal.pone.0303469
|View full text |Cite
|
Sign up to set email alerts
|

An interpretable machine learning model for predicting 28-day mortality in patients with sepsis-associated liver injury

Chengli Wen,
Xu Zhang,
Yong Li
et al.

Abstract: Sepsis-Associated Liver Injury (SALI) is an independent risk factor for death from sepsis. The aim of this study was to develop an interpretable machine learning model for early prediction of 28-day mortality in patients with SALI. Data from the Medical Information Mart for Intensive Care (MIMIC-IV, v2.2, MIMIC-III, v1.4) were used in this study. The study cohort from MIMIC-IV was randomized to the training set (0.7) and the internal validation set (0.3), with MIMIC-III (2001 to 2008) as external validation. T… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 38 publications
0
0
0
Order By: Relevance