The photodetachment energy threshold, as well as vibrationally-resolved spectral signatures of the lower lying excited states and dipole bound states in model aromatic phosphonate, sulfonate and phosphate oxyanions have been investigated using a photofragmentation spectrometer equipped with a cold ion trap. The effect of the laser excitation was monitored by mass-selective detection of product ion fragments or, alternatively, measuring the yield of the complementary neutral radicals discriminated according to their kinetic energy. The anions phenylphosphate, phenylsulfonate and p-toluenesulfonate evidenced the expected behaviour, characterised by the predominance of ionic fragmentation processes, at low energies, rapidly evolving to a scenario controlled by the electron photodetachment channel at higher energies. Surprisingly for such a similar system, the phenylphosphonate anion does not have any ionic fragmentation channels and only exhibits the presence of dipole bound states.