High-resolution satellite data and NCEP-NCAR reanalysis data are used to analyze 34 tropical cyclone (TC) genesis events in the western North Pacific during the 2000 and 2001 typhoon seasons. Three types of synoptic-scale disturbances are identified in the pregenesis stages. They are tropical cyclone energy dispersions (TCEDs), synoptic wave trains (SWTs) unrelated to preexisting TCs, and easterly waves (EWs). Among the total 34 TC genesis cases, 6 are associated with TCEDs, 11 cases are associated with SWTs, and 7 cases are associated with EWs. The analyses presented herein indicate that the occurrence of a TCED depends on the TC intensity and the background flow, with stronger cyclones and weaker background easterlies being more likely to induce a Rossby wave train. Not all Rossby wave trains would lead to the formation of a new TC. Among the 11 SWT cases, 4 cases are triggered by equatorial mixed Rossby-gravity waves. Cyclogenesis events associated with EWs are identified by the westward propagation of the perturbation kinetic energy and precipitation fields. For all three types of prestorm disturbances, it seems that scale contraction of the disturbances and convergence forcing from the large-scale environmental flow are possible mechanisms leading to the genesis. Further examination of the remaining 10 genesis cases with no significant prior synoptic-scale surface signals suggests three additional possible genesis scenarios: 1) a disturbance with upper-tropospheric forcing, 2) interaction of a preexisting TC with southwesterly monsoon flows, and 3) preexisting convective activity with no significant initial low-level vorticity. Tropical intraseasonal oscillations have a significant modulation on TC formation, especially in 2000.