2008
DOI: 10.1007/978-3-540-78534-7_4
|View full text |Cite
|
Sign up to set email alerts
|

An Introduction to Multi-Objective Evolutionary Algorithms and Some of Their Potential Uses in Biology

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0
2

Year Published

2011
2011
2024
2024

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 67 publications
0
1
0
2
Order By: Relevance
“…Many real-world problems involve optimizing simultaneously several conflicting objectives. For Multi-Objective Optimization Problems (MOPs), instead of a single optimum which defines the optimal solution in a single objective optimization problems, there is a set of alternative trade-offs that represent the set of optimal solutions for the problem regarding all the objectives in it that are not dominated by any solution in the search space [13]. The best solution be determined by the need of the designer or decision maker [14] [15].…”
Section: Basic Concepts For Multi-objective Optimizationmentioning
confidence: 99%
“…Many real-world problems involve optimizing simultaneously several conflicting objectives. For Multi-Objective Optimization Problems (MOPs), instead of a single optimum which defines the optimal solution in a single objective optimization problems, there is a set of alternative trade-offs that represent the set of optimal solutions for the problem regarding all the objectives in it that are not dominated by any solution in the search space [13]. The best solution be determined by the need of the designer or decision maker [14] [15].…”
Section: Basic Concepts For Multi-objective Optimizationmentioning
confidence: 99%
“…Dentre as técnicas computacionais, as quais vêm sendo empregadas nestes tipos de problemas, destacam-se os Algoritmos Evolutivos (AE). Os AEs são fáceis de se empregar nos problemas de otimização multi-objetivo e mono-objetivo (JAIMES;COELLO, 2008). Visto que os AEs são empregados em diversos tipos de problemas, a literatura vem reportando o desenvolvimento de frameworks, os quais implementam os conceitos genéricos dos AEs (técnicas de seleção, operadores genéticos, Dominância de Pareto por exemplo), para assim obter uma padronização dos AEs empregados.…”
Section: Modificando O Protpredunclassified
“…Estes são uma meta-heurística inspirada na teoria da evolucão (GOLDBERG, 1989) sendo os mesmos aplicados em virtude de sua capacidade em explorar o espaço de busca, aproveitando as melhores soluções (MICHALEWICZ;SCHO-ENAUER, 1996). Além disso, os AEs são fáceis de empregar nos problemas de otimização multi-objetivo e mono-objetivo (JAIMES;COELLO, 2008). A primeira implementação dos Algoritmos Evolutivos Multi-Objetivos (MOEA, do inglês Multi-Objetive Evolutionary Algorithms) foi proposta por Schaffer em 1985(SCHAFFER, 1985a.…”
Section: Introdução E Motivaçãounclassified