2014 American Control Conference 2014
DOI: 10.1109/acc.2014.6858628
|View full text |Cite
|
Sign up to set email alerts
|

An introspective algorithm for achieving low-gain high-performance robust neural-adaptive control

Abstract: A method proposed for halting weight drift in neural-adaptive control schemes is analyzed using the method of describing functions. The method utilizes a self-evaluating, introspective method with a Cerebellar Model Arithmetic Computer. The average error within the domain of local basis functions is measured, and then used to estimate the effect of weight updates on reducing the error i.e. estimating a partial derivative. The adaptation algorithm halts the weight updates when it is determined that weight updat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 7 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?