By measuring the temperature at an arbitrary single point located inside an unknown object or on its boundary, we show how we can uniquely reconstruct all the coefficients appearing in a general parabolic equation which models its cooling. We also reconstruct the shape of the object. The proof hinges on the fact that we can detect infinitely many eigenfunctions whose Wronskian does not vanish. This allows us to evaluate these coefficients by solving a simple linear algebraic system. The geometry of the domain and its boundary are found by reconstructing the first eigenfunction.