2003
DOI: 10.1088/0266-5611/20/1/008
|View full text |Cite
|
Sign up to set email alerts
|

An inverse problem originating from magnetohydrodynamics

Abstract: We are concerned with the possibility of identifying the real parameters a and b on the right-hand side of the equation u = au + b 0 inω R 2 (0.1) for a function u satisfying the boundary conditions u = 0, ∂u/∂ν = on ∂ω (0.2) with any fixed sufficiently smooth function ≡ 0.In the case of a smooth curve γ = ∂ω, we provide a sufficient condition, under which the pair (a, b) can be uniquely reconstructed through the specified function . On the basis of this sufficient condition, we show that there are at most fin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2009
2009
2023
2023

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 15 publications
(2 citation statements)
references
References 12 publications
0
1
0
1
Order By: Relevance
“…Our question is: What can be said about the composition of the body Ω, its geometry, the thermal coefficients a ij (x), and the internal heat sink coefficient q(x)? This is a typical question faced by physicists working on Tokamak with plasma inside a closed chamber, [10]. The range of the coefficients a ij (x)…”
Section: Introduction We Are Concerned With the Reconstruction Of A mentioning
confidence: 99%
“…Our question is: What can be said about the composition of the body Ω, its geometry, the thermal coefficients a ij (x), and the internal heat sink coefficient q(x)? This is a typical question faced by physicists working on Tokamak with plasma inside a closed chamber, [10]. The range of the coefficients a ij (x)…”
Section: Introduction We Are Concerned With the Reconstruction Of A mentioning
confidence: 99%
“…Тогда существует (см. [5], [7], а также [9]) не более конечного числа распределений f u , задаваемых аффинными функциями f : u → f (u) = au + b, если только односвязная область ω не круг (для которого, как легко видеть, число распределений континуально). Метод [5] доказательства этого результа-та базируется на достаточном условии единственности.…”
unclassified