A new basalt fiber reinforced acrylonitrile butadiene styrene (ABS) filament has been developed for fused filament fabrication (FFF, 3D printing) to be used in Mars habitat construction. Building habitats on Mars will be expensive, especially if all material must be shipped from earth. However, if some materials can be used from Mars, costs will dramatically decrease. Basalt is easily mined from the surface of Mars. This study details the production process of the material, experimental results from mechanical testing, and preliminary X-ray shielding characteristics. The addition of chopped 3 mm basalt fibers to standard FFF material, ABS, increased strength and stiffness of the composite material. By adding 25% (by weight) basalt fiber to ABS, tensile strength improved nearly 40% by increasing from 36.55 MPa to 50.58 MPa, while Modulus of Elasticity increased about 120% from 2.15 GPa to 4.79 GPa. Flexural strength increased by about 20% from 56.94 MPa to 68.51 MPa, while Flexural Modulus increased by about 70% from 1.81 GPa to 3.05 GPa. While compression results did not see much strength improvements, the addition of fibers also did not decrease compressive strength. This is important when considering that basalt fibers provide radiation shielding and the cost of adding basalt fibers to construction materials on Mars will be negligible compared to the cost of shipping other materials from earth. In preliminary digital radiography testing, it was shown that 77% of X-rays were shielded with 25% basalt fiber added (as compared to neat ABS). In small-scale 3D printing applications, the 25% fiber ratio seems to be the highest ratio that provides reliable FFF printing.