The current investigation examines the application of pulsed electric fields (PEFs) for isolating polyphenols from Cannabis sativa var. Futura 75 leaves. Firstly, the solvent composition, which included ethanol, water, and various mixtures of the two, was explored, along with the liquid-to-solid ratio. Subsequently, the primary parameters associated with PEFs (namely, pulse duration, pulse period, electric field intensity, and treatment duration) were optimized. The extracted samples were analyzed to determine their total polyphenol content (TPC), and individual polyphenols were also evaluated through high-performance liquid chromatography. In addition, the antioxidant activity of the extracts was assessed through ferric-reducing antioxidant power (FRAP) and DPPH assays. The extracts prepared utilizing PEFs were compared to the extracts obtained without PEFs in terms of their TPC, FRAP values, and DPPH activity. The results indicate that the most effective extraction parameters were a pulse duration of 10 μs, a pulse period of 1000 μs, and an electric field strength of 0.9 kV/cm after 25 min of extraction. The most efficient solvent was determined to be a 50% (v/v) mixture of ethanol and water in a 20:1 liquid-to-solid ratio. The extract obtained under the optimal conditions exhibited a ~75% increase in TPC compared to the extract obtained without any application of PEFs, while some individual polyphenols exhibited an increase of up to ~300%. Furthermore, significant increases of ~74% and ~71% were observed in FRAP and DPPH assays. From the information provided, it was observed that the tested variables had an impact on the recovery of polyphenols from C. sativa leaves.