The earliest branching cyanobacterium, Gloeobacter, exhibits a number of ancestral traits including the lack of thylakoids. It occurs epilithically in microbial mats, both subaerially and submerged in low-salinity habitats. These habitats and the absence of thylakoids are associated with the occurrence of membraneassociated photosynthetic processes in the plasma membrane, possibly limiting the rate of both assembly and reassembly of the oxygen-evolving complex, as well as the photosynthetic rate and in vitro growth rate. These factors interact with the occurrence of Gloeobacter in mats to constrain productivity in nature. Traits found in living Gloeobacter, with the probable time of origin of oxygenic photosynthesis and diversification of cyanobacteria, can be related to the possible role of oxygenic primary productivity and organic carbon burial on land during the early Earth in low-salinity environments around the time of the global oxidation event.