Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Alloys used in engines are subjected to challenging environments characterized by thermal and mechanical cyclic loadings during start-up and shut-down processes. These conditions can significantly increase the occurrence of fatigue failure mechanisms. Therefore, this study focuses on investigating the low cycle fatigue (LCF) behavior of directionally-solidified alloy at two distinct temperatures, namely 600 °C and 800 °C. Strain-controlled LCF tests were conducted at the specified temperatures, utilizing constant total strain amplitudes of 0.4%, 0.6%, 0.8%, and 1% under a totally reversed loading ratio (R = -1). The Coffin-Manson model, based on plastic deformation, along with a hysteresis energy-based criterion model, were employed to predict and evaluate fatigue life and LCF behavior. Notably, the hysteresis energy and Coffin-Manson models exhibited superior capability in predicting LCF life at 800 °C compared to 600 °C. REFERENCES Salehnasab, J. Marzbanrad, E. Poursaeidi, Transient thermal fatigue crack propagation prediction in a gas turbine component, Eng. Fail. Anal. 130 (2021) 105781. https://doi.org/10.1016/j.engfailanal.2021.105781. S.K. Balam, M. Tamilselvi, A.K. Mondal, R. Rajendran, An investigation into the cracking of platinum aluminide coated directionally solidified CM247 LC high pressure nozzle guide vanes of an aero engine, Eng. Fail. Anal. 94 (2018) 24–32. https://doi.org/10.1016/j.engfailanal.2018.07.027. M. Martinez-Esnaola, M. Arana, J. Bressers, J. Timm, A. Martin-Meizoso, A. Bennett, E.E. Affeldt, Crack initiation in an aluminide coated single crystal during thermomechanical fatigue, ASTM Spec. Tech. Publ. 1263 (1996) 68–81. https://doi.org/10.1520/STP16447S. Schlesinger, T. Seifert, J. Preussner, Experimental investigation of the time and temperature dependent growth of fatigue cracks in Inconel 718 and mechanism based lifetime prediction, Int. J. Fatigue. 99 (2017) 242–249. https://doi.org/10.1016/j.ijfatigue.2016.12.015. Furrer, H. Fecht, Ni-based superalloys for turbine discs, Jom. 51 (1999) 14–17. https://doi.org/10.1007/s11837-999-0005-y. Salehnasab, D. Zarifpour, J. Marzbanrad, G. Samimi, An Investigation into the fracture behavior of the IN625 hot-rolled superalloy, J. Mater. Eng. Perform. 30 (2021) 7171–7184. https://doi.org/https://doi.org/10.1007/s11665-021-05895-x. Caron, T. Khan, Evolution of Ni-based superalloys for single crystal gas turbine blade applications, Aerosp. Sci. Technol. 3 (1999) 513–523. https://doi.org/10.1016/S1270-9638(99)00108-X. Slámečka, J. Pokluda, M. Kianicová, J. Horníková, K. Obrtlík, Fatigue life of cast Inconel 713LC with/without protective diffusion coating under bending, torsion and their combination, Eng. Fract. Mech. 110 (2013) 459–467. https://doi.org/10.1016/j.engfracmech.2013.01.001. Rajendran, M.D. Ganeshachar, T.M. Rao, Condition assessment of gas turbine blades and coatings, Eng. Fail. Anal. 18 (2011) 2104–2110. https://doi.org/10.1016/j.engfailanal.2011.06.017. K. Bhaumik, M. Sujata, M.A. Venkataswamy, M.A. Parameswara, Failure of a low pressure turbine rotor blade of an aeroengine, Eng. Fail. Anal. 13 (2006) 1202–1219. https://doi.org/10.1016/j.engfailanal.2005.12.002. F. Nie, Z.L. Liu, X.M. Liu, Z. Zhuang, Size effects of γ′ precipitate on the creep properties of directionally solidified nickel-base super-alloys at middle temperature, Comput. Mater. Sci. 46 (2009) 400–406. https://doi.org/10.1016/j.commatsci.2009.03.023. Min, X. Wu, L. Xu, W. Tang, S. Zhang, G. Wallner, D. Liang, Y. Feng, Influence of different surface treatments of H13 hot work die steel on its thermal fatigue behaviors, J. Shanghai Univ. (English Ed. 5 (2001) 326–330. https://doi.org/10.1007/s11741-001-0049-x. K. Rai, J.K. Sahu, S.K. Das, N. Paulose, D.C. Fernando, C. Srivastava, Cyclic plastic deformation behaviour of a directionally solidified nickel base superalloy at 850° C: damage micromechanisms, Mater. Charact. 141 (2018) 120–128. https://doi.org/10.1016/j.matchar.2018.04.039. Zhang, L.G. Zhao, A. Roy, V. V Silberschmidt, G. Mccolvin, Low-cycle fatigue of single crystal nickel-based superalloy–mechanical testing and TEM characterisation, Mater. Sci. Eng. A. 744 (2019) 538–547. https://doi.org/10.1016/j.msea.2018.12.084. Qu, C.M. Fu, C. Dong, J.F. Tian, Z.F. Zhang, Failure analysis of the 1st stage blades in gas turbine engine, Eng. Fail. Anal. 32 (2013) 292–303. https://doi.org/10.1016/j.engfailanal.2013.03.017. Salehnasab, E. Poursaeidi, S.A. Mortazavi, G.H. Farokhian, Hot corrosion failure in the first stage nozzle of a gas turbine engine, Eng. Fail. Anal. 60 (2016). https://doi.org/10.1016/j.engfailanal.2015.11.057. Kumari, D.V. V Satyanarayana, M. Srinivas, Failure analysis of gas turbine rotor blades, Eng. Fail. Anal. 45 (2014) 234–244. https://doi.org/10.1016/j.engfailanal.2014.06.003. J. Carter, Common failures in gas turbine blades, Eng. Fail. Anal. 12 (2005) 237–247. https://doi.org/10.1016/j.engfailanal.2004.07.004. Salehnasab, E. Poursaeidi, Mechanism and modeling of fatigue crack initiation and propagation in the directionally solidified CM186 LC blade of a gas turbine engine, Eng. Fract. Mech. 225 (2020) 106842. https://doi.org/10.1016/j.engfracmech.2019.106842. I. Stephens, A. Fatemi, R.R. Stephens, H.O. Fuchs, Metal fatigue in engineering, John Wiley & Sons, 2000. Salehnasab, J. Marzbanrad, E. Poursaeidi, Conventional shot peening treatment effects on thermal fatigue crack growth and failure mechanisms of a solid solution alloy, Eng. Fail. Anal. 155 (2024) 107740. https://doi.org/10.1016/j.engfailanal.2023.107740. Prasad, R. Sarkar, P. Ghosal, V. Kumar, M. Sundararaman, High temperature low cycle fatigue deformation behaviour of forged IN 718 superalloy turbine disc, Mater. Sci. Eng. A. 568 (2013) 239–245. https://doi.org/10.1016/j.msea.2012.12.069. Cano, J.A. Rodríguez, J.M. Rodríguez, J.C. García, F.Z. Sierra, S.R. Casolco, M. Herrera, Detection of damage in steam turbine blades caused by low cycle and strain cycling fatigue, Eng. Fail. Anal. 97 (2019) 579–588. https://doi.org/10.1016/j.engfailanal.2019.01.015. Gao, C. Fei, G. Bai, L. Ding, Reliability-based low-cycle fatigue damage analysis for turbine blade with thermo-structural interaction, Aerosp. Sci. Technol. 49 (2016) 289–300. https://doi.org/10.1016/j.ast.2015.12.017. Gustafsson, J.J. Moverare, S. Johansson, K. Simonsson, M. Hörnqvist, T. Månsson, S. Sjöström, Influence of high temperature hold times on the fatigue crack propagation in Inconel 718, Int. J. Fatigue. 33 (2011) 1461–1469. https://doi.org/10.1016/j.ijfatigue.2011.05.011. M. Seo, I.S. Kim, C.Y. Jo, Low Cycle Fatigue and Fracture Behavior of Nickel-Base Superalloy CM247LC at 760° C, in: Mater. Sci. Forum, Trans Tech Publ, 2004: pp. 561–564. https://doi.org/10.4028/www.scientific.net/MSF.449-452.561. D. Antolovich, S. Liu, R. Baur, Low cycle fatigue behavior of René 80 at elevated temperature, Metall. Trans. A. 12 (1981) 473–481. https://doi.org/10.1007/BF02648545. He, Y. Zhang, W. Qiu, H.-J. Shi, J. Gu, Temperature effect on the low cycle fatigue behavior of a directionally solidified nickel-base superalloy, Mater. Sci. Eng. A. 676 (2016) 246–252. https://doi.org/10.1016/j.msea.2016.08.064. He, Q. Zheng, X. Sun, H. Guan, Z. Hu, K. Tieu, C. Lu, H. Zhu, Effect of temperature and strain amplitude on dislocation structure of M963 superalloy during high-temperature low cycle fatigue, Mater. Trans. 47 (2006) 67–71. https://doi.org/10.2320/matertrans.47.67. Deng, J. Xu, Y. Hu, Z. Huang, L. Jiang, Isothermal and thermomechanical fatigue behavior of Inconel 718 superalloy, Mater. Sci. Eng. A. 742 (2019) 813–819. https://doi.org/10.1016/j.msea.2018.11.052. J. Kashinga, L.G. Zhao, V. V Silberschmidt, F. Farukh, N.C. Barnard, M.T. Whittaker, D. Proprentner, B. Shollock, G. McColvin, Low cycle fatigue of a directionally solidified nickel-based superalloy: Testing, characterisation and modelling, Mater. Sci. Eng. A. 708 (2017) 503–513. https://doi.org/10.1016/j.msea.2017.10.024. Mukherjee, K. Barat, S. Sivaprasad, S. Tarafder, S.K. Kar, Elevated temperature low cycle fatigue behaviour of Haynes 282 and its correlation with microstructure–Effect of ageing conditions, Mater. Sci. Eng. A. 762 (2019) 138073. https://doi.org/10.1016/j.msea.2019.138073. V. Rao, N.C.S. Srinivas, G.V.S. Sastry, V. Singh, Low cycle fatigue, deformation and fracture behaviour of Inconel 617 alloy, Mater. Sci. Eng. A. 765 (2019) 138286. https://doi.org/10.1016/j.msea.2019.138286. Harris, G.L. Erickson, R.E. Schwer, MAR-M247 derivations—CM247 LC DS alloy, CMSX single crystal alloys, properties and performance, Superalloys. 1984 (1984) 221–230. https://doi.org/10.7449/1984/SUPERALLOYS_1984_221_230. -C. Zhao, J.H. Westbrook, Ultrahigh-temperature materials for jet engines, MRS Bull. 28 (2003) 622–630. https://doi.org/10.1557/mrs2003.189. S. Fan, X.G. Yang, D.Q. Shi, S.W. Han, S.L. Li, A quantitative role of rafting on low cycle fatigue behaviour of a directionally solidified Ni-based superalloy through a cross-correlated image processing method, Int. J. Fatigue. 131 (2020) 105305. https://doi.org/10.1016/j.ijfatigue.2019.105305. Radonovich, A.P. Gordon, Methods of extrapolating low cycle fatigue data to high stress amplitudes, 2008. https://doi.org/10.1115/GT2008-50365. R. Daubenspeck, A.P. Gordon, Extrapolation techniques for very low cycle fatigue behavior of a Ni-base superalloy, (2011). https://doi.org/10.1115/1.4003602. Nagarjuna, M. Srinivas, K. Balasubramanian, D.S. Sarmat, Effect of alloying content on high cycle fatigue behaviour of Cu Ti alloys, Int. J. Fatigue. 19 (1997) 51–57. https://doi.org/10.1016/S0142-1123(96)00041-2. Lai, T. Lund, K. Rydén, A. Gabelli, I. Strandell, The fatigue limit of bearing steels–Part I: A pragmatic approach to predict very high cycle fatigue strength, Int. J. Fatigue. 38 (2012) 155–168. https://doi.org/10.1016/j.ijfatigue.2011.09.015. V.U. Praveen, V. Singh, Effect of cold rolling on the Coffin–manson relationship in low-cycle fatigue of superalloy IN718, Metall. Mater. Trans. A. 39 (2008) 79–86. https://doi.org/10.1007/s11661-007-9378-0. Suresh, Fatigue of materials, Cambridge university press, 1998. Liu, Z.J. Zhang, P. Zhang, Z.F. Zhang, Extremely-low-cycle fatigue behaviors of Cu and Cu–Al alloys: Damage mechanisms and life prediction, Acta Mater. 83 (2015) 341–356. https://doi.org/10.1016/j.actamat.2014.10.002. Xue, A unified expression for low cycle fatigue and extremely low cycle fatigue and its implication for monotonic loading, Int. J. Fatigue. 30 (2008) 1691–1698. https://doi.org/10.1016/j.ijfatigue.2008.03.004. Kang, H. Ge, Predicting ductile crack initiation of steel bridge structures due to extremely low-cycle fatigue using local and non-local models, J. Earthq. Eng. 17 (2013) 323–349. https://doi.org/10.1080/13632469.2012.746211. W. Shao, P. Zhang, R. Liu, Z.J. Zhang, J.C. Pang, Z.F. Zhang, Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction, Acta Mater. 103 (2016) 781–795. https://doi.org/10.1016/j.actamat.2015.11.015. Miao, T.M. Pollock, J.W. Jones, Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature, Acta Mater. 57 (2009) 5964–5974. https://doi.org/10.1016/j.actamat.2009.08.022. G. Wang, J.L. Liu, T. Jin, X.F. Sun, Y.Z. Zhou, Z.Q. Hu, J.H. Do, B.G. Choi, I.S. Kim, C.Y. Jo, Deformation mechanisms of a nickel-based single-crystal superalloy during low-cycle fatigue at different temperatures, Scr. Mater. 99 (2015) 57–60. https://doi.org/10.1016/j.scriptamat.2014.11.026. J. Plumbridge, M.E. Dalski, P.J. Castle, High strain fatigue of a type 316 stainless steel, Fatigue Fract. Eng. Mater. Struct. 3 (1980) 177–188. https://doi.org/10.1111/j.1460-2695.1980.tb01112.x.
Alloys used in engines are subjected to challenging environments characterized by thermal and mechanical cyclic loadings during start-up and shut-down processes. These conditions can significantly increase the occurrence of fatigue failure mechanisms. Therefore, this study focuses on investigating the low cycle fatigue (LCF) behavior of directionally-solidified alloy at two distinct temperatures, namely 600 °C and 800 °C. Strain-controlled LCF tests were conducted at the specified temperatures, utilizing constant total strain amplitudes of 0.4%, 0.6%, 0.8%, and 1% under a totally reversed loading ratio (R = -1). The Coffin-Manson model, based on plastic deformation, along with a hysteresis energy-based criterion model, were employed to predict and evaluate fatigue life and LCF behavior. Notably, the hysteresis energy and Coffin-Manson models exhibited superior capability in predicting LCF life at 800 °C compared to 600 °C. REFERENCES Salehnasab, J. Marzbanrad, E. Poursaeidi, Transient thermal fatigue crack propagation prediction in a gas turbine component, Eng. Fail. Anal. 130 (2021) 105781. https://doi.org/10.1016/j.engfailanal.2021.105781. S.K. Balam, M. Tamilselvi, A.K. Mondal, R. Rajendran, An investigation into the cracking of platinum aluminide coated directionally solidified CM247 LC high pressure nozzle guide vanes of an aero engine, Eng. Fail. Anal. 94 (2018) 24–32. https://doi.org/10.1016/j.engfailanal.2018.07.027. M. Martinez-Esnaola, M. Arana, J. Bressers, J. Timm, A. Martin-Meizoso, A. Bennett, E.E. Affeldt, Crack initiation in an aluminide coated single crystal during thermomechanical fatigue, ASTM Spec. Tech. Publ. 1263 (1996) 68–81. https://doi.org/10.1520/STP16447S. Schlesinger, T. Seifert, J. Preussner, Experimental investigation of the time and temperature dependent growth of fatigue cracks in Inconel 718 and mechanism based lifetime prediction, Int. J. Fatigue. 99 (2017) 242–249. https://doi.org/10.1016/j.ijfatigue.2016.12.015. Furrer, H. Fecht, Ni-based superalloys for turbine discs, Jom. 51 (1999) 14–17. https://doi.org/10.1007/s11837-999-0005-y. Salehnasab, D. Zarifpour, J. Marzbanrad, G. Samimi, An Investigation into the fracture behavior of the IN625 hot-rolled superalloy, J. Mater. Eng. Perform. 30 (2021) 7171–7184. https://doi.org/https://doi.org/10.1007/s11665-021-05895-x. Caron, T. Khan, Evolution of Ni-based superalloys for single crystal gas turbine blade applications, Aerosp. Sci. Technol. 3 (1999) 513–523. https://doi.org/10.1016/S1270-9638(99)00108-X. Slámečka, J. Pokluda, M. Kianicová, J. Horníková, K. Obrtlík, Fatigue life of cast Inconel 713LC with/without protective diffusion coating under bending, torsion and their combination, Eng. Fract. Mech. 110 (2013) 459–467. https://doi.org/10.1016/j.engfracmech.2013.01.001. Rajendran, M.D. Ganeshachar, T.M. Rao, Condition assessment of gas turbine blades and coatings, Eng. Fail. Anal. 18 (2011) 2104–2110. https://doi.org/10.1016/j.engfailanal.2011.06.017. K. Bhaumik, M. Sujata, M.A. Venkataswamy, M.A. Parameswara, Failure of a low pressure turbine rotor blade of an aeroengine, Eng. Fail. Anal. 13 (2006) 1202–1219. https://doi.org/10.1016/j.engfailanal.2005.12.002. F. Nie, Z.L. Liu, X.M. Liu, Z. Zhuang, Size effects of γ′ precipitate on the creep properties of directionally solidified nickel-base super-alloys at middle temperature, Comput. Mater. Sci. 46 (2009) 400–406. https://doi.org/10.1016/j.commatsci.2009.03.023. Min, X. Wu, L. Xu, W. Tang, S. Zhang, G. Wallner, D. Liang, Y. Feng, Influence of different surface treatments of H13 hot work die steel on its thermal fatigue behaviors, J. Shanghai Univ. (English Ed. 5 (2001) 326–330. https://doi.org/10.1007/s11741-001-0049-x. K. Rai, J.K. Sahu, S.K. Das, N. Paulose, D.C. Fernando, C. Srivastava, Cyclic plastic deformation behaviour of a directionally solidified nickel base superalloy at 850° C: damage micromechanisms, Mater. Charact. 141 (2018) 120–128. https://doi.org/10.1016/j.matchar.2018.04.039. Zhang, L.G. Zhao, A. Roy, V. V Silberschmidt, G. Mccolvin, Low-cycle fatigue of single crystal nickel-based superalloy–mechanical testing and TEM characterisation, Mater. Sci. Eng. A. 744 (2019) 538–547. https://doi.org/10.1016/j.msea.2018.12.084. Qu, C.M. Fu, C. Dong, J.F. Tian, Z.F. Zhang, Failure analysis of the 1st stage blades in gas turbine engine, Eng. Fail. Anal. 32 (2013) 292–303. https://doi.org/10.1016/j.engfailanal.2013.03.017. Salehnasab, E. Poursaeidi, S.A. Mortazavi, G.H. Farokhian, Hot corrosion failure in the first stage nozzle of a gas turbine engine, Eng. Fail. Anal. 60 (2016). https://doi.org/10.1016/j.engfailanal.2015.11.057. Kumari, D.V. V Satyanarayana, M. Srinivas, Failure analysis of gas turbine rotor blades, Eng. Fail. Anal. 45 (2014) 234–244. https://doi.org/10.1016/j.engfailanal.2014.06.003. J. Carter, Common failures in gas turbine blades, Eng. Fail. Anal. 12 (2005) 237–247. https://doi.org/10.1016/j.engfailanal.2004.07.004. Salehnasab, E. Poursaeidi, Mechanism and modeling of fatigue crack initiation and propagation in the directionally solidified CM186 LC blade of a gas turbine engine, Eng. Fract. Mech. 225 (2020) 106842. https://doi.org/10.1016/j.engfracmech.2019.106842. I. Stephens, A. Fatemi, R.R. Stephens, H.O. Fuchs, Metal fatigue in engineering, John Wiley & Sons, 2000. Salehnasab, J. Marzbanrad, E. Poursaeidi, Conventional shot peening treatment effects on thermal fatigue crack growth and failure mechanisms of a solid solution alloy, Eng. Fail. Anal. 155 (2024) 107740. https://doi.org/10.1016/j.engfailanal.2023.107740. Prasad, R. Sarkar, P. Ghosal, V. Kumar, M. Sundararaman, High temperature low cycle fatigue deformation behaviour of forged IN 718 superalloy turbine disc, Mater. Sci. Eng. A. 568 (2013) 239–245. https://doi.org/10.1016/j.msea.2012.12.069. Cano, J.A. Rodríguez, J.M. Rodríguez, J.C. García, F.Z. Sierra, S.R. Casolco, M. Herrera, Detection of damage in steam turbine blades caused by low cycle and strain cycling fatigue, Eng. Fail. Anal. 97 (2019) 579–588. https://doi.org/10.1016/j.engfailanal.2019.01.015. Gao, C. Fei, G. Bai, L. Ding, Reliability-based low-cycle fatigue damage analysis for turbine blade with thermo-structural interaction, Aerosp. Sci. Technol. 49 (2016) 289–300. https://doi.org/10.1016/j.ast.2015.12.017. Gustafsson, J.J. Moverare, S. Johansson, K. Simonsson, M. Hörnqvist, T. Månsson, S. Sjöström, Influence of high temperature hold times on the fatigue crack propagation in Inconel 718, Int. J. Fatigue. 33 (2011) 1461–1469. https://doi.org/10.1016/j.ijfatigue.2011.05.011. M. Seo, I.S. Kim, C.Y. Jo, Low Cycle Fatigue and Fracture Behavior of Nickel-Base Superalloy CM247LC at 760° C, in: Mater. Sci. Forum, Trans Tech Publ, 2004: pp. 561–564. https://doi.org/10.4028/www.scientific.net/MSF.449-452.561. D. Antolovich, S. Liu, R. Baur, Low cycle fatigue behavior of René 80 at elevated temperature, Metall. Trans. A. 12 (1981) 473–481. https://doi.org/10.1007/BF02648545. He, Y. Zhang, W. Qiu, H.-J. Shi, J. Gu, Temperature effect on the low cycle fatigue behavior of a directionally solidified nickel-base superalloy, Mater. Sci. Eng. A. 676 (2016) 246–252. https://doi.org/10.1016/j.msea.2016.08.064. He, Q. Zheng, X. Sun, H. Guan, Z. Hu, K. Tieu, C. Lu, H. Zhu, Effect of temperature and strain amplitude on dislocation structure of M963 superalloy during high-temperature low cycle fatigue, Mater. Trans. 47 (2006) 67–71. https://doi.org/10.2320/matertrans.47.67. Deng, J. Xu, Y. Hu, Z. Huang, L. Jiang, Isothermal and thermomechanical fatigue behavior of Inconel 718 superalloy, Mater. Sci. Eng. A. 742 (2019) 813–819. https://doi.org/10.1016/j.msea.2018.11.052. J. Kashinga, L.G. Zhao, V. V Silberschmidt, F. Farukh, N.C. Barnard, M.T. Whittaker, D. Proprentner, B. Shollock, G. McColvin, Low cycle fatigue of a directionally solidified nickel-based superalloy: Testing, characterisation and modelling, Mater. Sci. Eng. A. 708 (2017) 503–513. https://doi.org/10.1016/j.msea.2017.10.024. Mukherjee, K. Barat, S. Sivaprasad, S. Tarafder, S.K. Kar, Elevated temperature low cycle fatigue behaviour of Haynes 282 and its correlation with microstructure–Effect of ageing conditions, Mater. Sci. Eng. A. 762 (2019) 138073. https://doi.org/10.1016/j.msea.2019.138073. V. Rao, N.C.S. Srinivas, G.V.S. Sastry, V. Singh, Low cycle fatigue, deformation and fracture behaviour of Inconel 617 alloy, Mater. Sci. Eng. A. 765 (2019) 138286. https://doi.org/10.1016/j.msea.2019.138286. Harris, G.L. Erickson, R.E. Schwer, MAR-M247 derivations—CM247 LC DS alloy, CMSX single crystal alloys, properties and performance, Superalloys. 1984 (1984) 221–230. https://doi.org/10.7449/1984/SUPERALLOYS_1984_221_230. -C. Zhao, J.H. Westbrook, Ultrahigh-temperature materials for jet engines, MRS Bull. 28 (2003) 622–630. https://doi.org/10.1557/mrs2003.189. S. Fan, X.G. Yang, D.Q. Shi, S.W. Han, S.L. Li, A quantitative role of rafting on low cycle fatigue behaviour of a directionally solidified Ni-based superalloy through a cross-correlated image processing method, Int. J. Fatigue. 131 (2020) 105305. https://doi.org/10.1016/j.ijfatigue.2019.105305. Radonovich, A.P. Gordon, Methods of extrapolating low cycle fatigue data to high stress amplitudes, 2008. https://doi.org/10.1115/GT2008-50365. R. Daubenspeck, A.P. Gordon, Extrapolation techniques for very low cycle fatigue behavior of a Ni-base superalloy, (2011). https://doi.org/10.1115/1.4003602. Nagarjuna, M. Srinivas, K. Balasubramanian, D.S. Sarmat, Effect of alloying content on high cycle fatigue behaviour of Cu Ti alloys, Int. J. Fatigue. 19 (1997) 51–57. https://doi.org/10.1016/S0142-1123(96)00041-2. Lai, T. Lund, K. Rydén, A. Gabelli, I. Strandell, The fatigue limit of bearing steels–Part I: A pragmatic approach to predict very high cycle fatigue strength, Int. J. Fatigue. 38 (2012) 155–168. https://doi.org/10.1016/j.ijfatigue.2011.09.015. V.U. Praveen, V. Singh, Effect of cold rolling on the Coffin–manson relationship in low-cycle fatigue of superalloy IN718, Metall. Mater. Trans. A. 39 (2008) 79–86. https://doi.org/10.1007/s11661-007-9378-0. Suresh, Fatigue of materials, Cambridge university press, 1998. Liu, Z.J. Zhang, P. Zhang, Z.F. Zhang, Extremely-low-cycle fatigue behaviors of Cu and Cu–Al alloys: Damage mechanisms and life prediction, Acta Mater. 83 (2015) 341–356. https://doi.org/10.1016/j.actamat.2014.10.002. Xue, A unified expression for low cycle fatigue and extremely low cycle fatigue and its implication for monotonic loading, Int. J. Fatigue. 30 (2008) 1691–1698. https://doi.org/10.1016/j.ijfatigue.2008.03.004. Kang, H. Ge, Predicting ductile crack initiation of steel bridge structures due to extremely low-cycle fatigue using local and non-local models, J. Earthq. Eng. 17 (2013) 323–349. https://doi.org/10.1080/13632469.2012.746211. W. Shao, P. Zhang, R. Liu, Z.J. Zhang, J.C. Pang, Z.F. Zhang, Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction, Acta Mater. 103 (2016) 781–795. https://doi.org/10.1016/j.actamat.2015.11.015. Miao, T.M. Pollock, J.W. Jones, Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature, Acta Mater. 57 (2009) 5964–5974. https://doi.org/10.1016/j.actamat.2009.08.022. G. Wang, J.L. Liu, T. Jin, X.F. Sun, Y.Z. Zhou, Z.Q. Hu, J.H. Do, B.G. Choi, I.S. Kim, C.Y. Jo, Deformation mechanisms of a nickel-based single-crystal superalloy during low-cycle fatigue at different temperatures, Scr. Mater. 99 (2015) 57–60. https://doi.org/10.1016/j.scriptamat.2014.11.026. J. Plumbridge, M.E. Dalski, P.J. Castle, High strain fatigue of a type 316 stainless steel, Fatigue Fract. Eng. Mater. Struct. 3 (1980) 177–188. https://doi.org/10.1111/j.1460-2695.1980.tb01112.x.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.