In the existing logistics distribution methods, the demand of customers is not considered. The goal of these methods is to maximize the vehicle capacity, which leads to the total distance of vehicles to be too long, the need for large numbers of vehicles and high transportation costs. To address these problems, a method of multi-objective clustering of logistics distribution route based on hybrid ant colony algorithm is proposed in this paper. Before choosing the distribution route, the customers are assigned to the unknown types according to a lot of customers attributes so as to reduce the scale of the solution. The discrete point location model is applied to logistics distribution area to reduce the cost of transportation. A mathematical model of multi-objective logistics distribution routing problem is built with consideration of constraints of the capacity, transportation distance, and time window, and a hybrid ant colony algorithm is used to solve the problem. Experimental results show that, the optimized route is more desirable, which can save the cost of transportation, reduce the time loss in the process of circulation, and effectively improve the quality of logistics distribution service.