Abstract-Scanning a planar array in the x-z plane directs the beam peak to any direction off the broadside along the same plane. Reduction of sidelobe level in concentric ring array of isotropic antennas scanned in the x-z plane result in a wide first null beamwidth (FNBW). In this paper, the authors propose pattern synthesis methods to reduce the sidelobe levels with fixed FNBW by making the scanned array thinned based on two different global optimization algorithms, namely Gravitational Search Algorithm (GSA) and modified Particle Swarm Optimization (PSO) algorithm. The thinning percentage of the array is kept more than 45 percent and the first null beamwidth (FNBW) is kept equal to or less than that of a fully populated, uniformly excited and 0.5λ spaced concentric circular ring array of same scanning angle and same number of elements and rings.