Silver microparticles (ca. 1 μm average size clustered into cage-like aggregates of 10-20 μm diameter) are shown to adhere to a glassy carbon electrode surface to give voltammetric current responses, which are considerably enhanced/stabilised when applying a coating with a molecularly rigid polymer of intrinsic microporosity (PIM-EA-TB). In preliminary voltammetric experiments characteristic Ag(0/I) surface oxidation and back-reduction processes are observed in aqueous phosphate buffer (associated with silver phosphate layer formation on the silver surface). In contrast to the oxidation, which is dominated by a nucleation process causing a sharp well-defined current signal, for the back-reduction stochastic current responses are observed possibly associated with density fluctuations in the surrounding liquid phase (BBrownian activation^) as an essential part of the mechanism of conversion of surface-oxidised silver back to silver metal.