Abstract:Children with severe aplastic anemia (SAA) face heterogeneous prognoses after immunosuppressive therapy (IST). There are few models that can predict the long-term outcomes of IST for these patients. The objective of this paper is to develop a more effective prediction model for SAA prognosis based on clinical electronic medical records from 203 children with newly diagnosed SAA. In the early stage, a novel model for long-term outcomes of SAA patients with IST was developed using machine-learning techniques. Am… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.