Temperature plays a significant role in anaerobic digestion (AD) as it affects the microbial communities and ultimately controls the efficiency of the process. Few studies have looked at temperature-adjusted AD, but it is unclear how the temperature shifts affect biogas production and the dynamics of microorganisms involved in methanogenesis. This study tested two temperature shift scenarios in fed-batch mode using anaerobically digested sewage sludge and glucose-based substrate. The first scenario was acclimatized to upshifting temperatures from 42 °C to 48 °C while the second was acclimatized to downshifting temperatures from 55 °C to 45 °C. Both temperature shift scenarios resulted in a decrease in biogas production, especially at 45 °C. The upshifted scenario experienced a maximum decrease of 83%, and the downshifted scenario experienced a 16–33% decrease in methane production. Next-generation 16S rRNA sequencing revealed the domination of Methanoculleus in the upshifted scenario. However, a low correlation between the number of Methanoculleus and the other hydrogenotrophic methanogens to biogas production indicates inhibition in the hydrogenotrophic pathway. The downshifted scenario showed better biogas production due to the substantial domination of acetoclastic Methanosaeta and the low abundance of sulfate-reducing bacteria. Hence, the temperature shift affects the microbial communities, significantly affecting biogas production performance.