This article describes a study that aimed to estimate the fuel-saving potential possessed by the hybridization of conventional powertrains intended for heavy-duty vehicles based on diesel and natural gas fueled engines. The tools used for this analysis constitute mathematical models of vehicle dynamics and the powertrain, including its components, i.e., the engine, electric drive, transmission, and energy storage system (ESS). The model of the latter, accompanied by experimental data, allowed for an analysis of employing a supercapacitor regarding the selection of its energy content and the interface between the traction electric drive and the ESS (in light of the wide voltage operating range of supercapacitors). The results revealed the influence of these factors on both the supercapacitor efficiency (during its operation within a powertrain) and the vehicle fuel economy. After implementation of the optimized ESS design within the experimentally validated vehicle model, simulations were conducted in several driving cycles. The results allowed us to compare the fuel economy provided by the hybridization for diesel and gas powertrains in different driving conditions, with different vehicle masses, taking into account the onboard auxiliary power consumption.The complicating aspect of replacing diesel engines with gas engines is the necessity of having an onboard storage for the compressed or liquefied gas, which constitutes a complex system that has its own cost, service, safety, and other issues. Therefore, whether to choose a gas-based vehicle or stay conservative with a diesel-based option becomes a trade-off decision.During the past few years, the National Research Center "NAMI" has been conducting an R&D project in cooperation with one of the country's major producers of heavy-duty vehicles. The project was aimed toward developing a gas-fueled engine family derived from the diesel engine that was newly developed by the aforementioned HD vehicle manufacturer. One can find the details on the project and its results in References [7][8][9]. The main outcomes of the project were the gas-fueled engines (see example in Figure 1) operating with the Otto and Miller thermodynamic cycles. The engines were installed in vehicles intended for long-haul operations (also shown in Figure 1) and tested in road conditions.