Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This work studied theoretically in details the mechanism, kinetics and thermochemistry of reactions of methyl radical with methanol. The theoretical study was carried out by ab initio molecular orbital theory based on CCSD(T)/B3LYP/6-311++G(3df,2p) methods in conjunction variational transition state theory (VTST). Calculated results showed that, in the temperature range from 300K to 2000K, and the pressure at 760 Torr, temperature dependent rate constants of the reactions were: CH3 + CH3OH ® CH4 + CH2OH k(T) = 2.146´10-27.T4.64.exp(-33.47[kJ/mol/RT), CH3 + CH3OH ® CH4 + CH3O k(T) = 2.583´10-27.T4.52.exp(-29.56[kJ/mol/RT), CH3 + CH3OH ® H + CH3OCH3 k(T) = 1.025´10-23.T3.16.exp(-186.84[kJ/mol/RT) When the reaction temperature is above 730 K, the abstraction process of H in –CH3 group of methanol will occur faster. The abstraction process of H in –OH group dominates when the reaction temperature is below 730 K. Keywords Kinetic, methyl, methanol, ab initio References 1. Slagle, I.R., D. Sarzynski, and D. Gutman, Kinetics of the reaction between methyl radicals and oxygen atoms between 294 and 900 K. The Journal of Physical Chemistry, 1987. 91(16): p. 4375-4379.2. Rutz L., B.H., Bozzelli J. W., Methyl Radical and Shift Reactions with Aliphatic and Aromatic Hydrocarbons: Thermochemical Properties, Reaction Paths and Kinetic Parameters. American Chemical Society, Division Fuel Chemistry, 2004. 49(1): p. 451-452.3. Johnson, D.G., M.A. Blitz, and P.W. Seakins, The reaction of methylidene (CH) with methanol isotopomers. Physical Chemistry Chemical Physics, 2000. 2(11): p. 2549-2553.4. Cribb, P.H., J.E. Dove, and S. Yamazaki, A kinetic study of the pyrolysis of methanol using shock tube and computer simulation techniques. Combustion and Flame, 1992. 88(2): p. 169-185.5. Dombrowsky, C., et al., An Investigation of the Methanol Decomposition Behind Incident Shock Waves. Berichte der Bunsengesellschaft für physikalische Chemie, 1991. 95(12): p. 1685-1687.6. Krasnoperov, L.N. and J.V. Michael, High-Temperature Shock Tube Studies Using Multipass Absorption: Rate Constant Results for OH + CH3, OH + CH2, and the Dissociation of CH3OH. The Journal of Physical Chemistry A, 2004. 108(40): p. 8317-8323.7. Shannon, T.W. and A.G. Harrison, The reaction of methyl radicals with methyl alcohol. Canadian Journal of Chemistry, 1963. 41(10): p. 2455-2461.8. Jodkowski, J.T., et al., Theoretical Study of the Kinetics of the Hydrogen Abstraction from Methanol. 3. Reaction of Methanol with Hydrogen Atom, Methyl, and Hydroxyl Radicals. The Journal of Physical Chemistry A, 1999. 103(19): p. 3750-3765.9. Alecu, I.M. and D.G. Truhlar, Computational Study of the Reactions of Methanol with the Hydroperoxyl and Methyl Radicals. 2. Accurate Thermal Rate Constants. The Journal of Physical Chemistry A, 2011. 115(51): p. 14599-14611.10. Peukert, S.L. and J.V. Michael, High-Temperature Shock Tube and Modeling Studies on the Reactions of Methanol with D-Atoms and CH3-Radicals. The Journal of Physical Chemistry A, 2013. 117(40): p. 10186-10195.11. Anastasi, C. and D.U. Hancock, Reaction of CH3 radicals with methanol in the range 525 <T/K < 603. Journal of the Chemical Society, Faraday Transactions, 1990. 86(14): p. 2553-2555.12. Dombrowsky, C. and H.G. Wagner, An investigation of the reaction between CH3 radicals and methanol at high temperatures. Berichte der Bunsengesellschaft für physikalische Chemie, 1989. 93(5): p. 633-637.13. Tsang, W., Chemical Kinetic Data Base for Combustion Chemistry. Part 2. Methanol. Journal of Physical and Chemical Reference Data, 1987. 16(3): p. 471-508.14. Becke, A.D., Density‐functional thermochemistry. II. The effect of the Perdew–Wang generalized‐gradient correlation correction. The Journal of Chemical Physics, 1992. 97(12): p. 9173-9177.15. Becke, A.D., Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of Chemical Physics, 1992. 96(3): p. 2155-2160.16. Becke, A.D., Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 1993. 98(7): p. 5648-5652.17. Yang, W., R.G. Parr, and C. Lee, Various functionals for the kinetic energy density of an atom or molecule. Physical Review A, 1986. 34(6): p. 4586-4590.18. Hehre W. , R.L., Schleyer P. V. R. , and Pople J. A. and 30, Ab Initio Molecular Orbital Theory. 1986, New York: Wiley.19. Andersson, M.P. and P. Uvdal, New Scale Factors for Harmonic Vibrational Frequencies Using the B3LYP Density Functional Method with the Triple-ζ Basis Set 6-311+G(d,p). The Journal of Physical Chemistry A, 2005. 109(12): p. 2937-2941.20. Raghavachari, K., et al., A fifth-order perturbation comparison of electron correlation theories. Chemical Physics Letters, 1989. 157(6): p. 479-483.21. M.J. Frisch, G.W.T., H.B. Schlegel, et al., GAUSSIAN 09, Revision C.01, Gaussian Inc., Wallingford CT, 2010.22. Robson Wright, M., Theories of Chemical Reactions, in An Introduction to Chemical Kinetics. 2005, John Wiley & Sons, Ltd. p. 99-164.23. Goos, E.B., A.; Ruscic, B., Extended Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables. http://garfield.chem.elte.hu/Burcat/burcat.html, October, 2017.
This work studied theoretically in details the mechanism, kinetics and thermochemistry of reactions of methyl radical with methanol. The theoretical study was carried out by ab initio molecular orbital theory based on CCSD(T)/B3LYP/6-311++G(3df,2p) methods in conjunction variational transition state theory (VTST). Calculated results showed that, in the temperature range from 300K to 2000K, and the pressure at 760 Torr, temperature dependent rate constants of the reactions were: CH3 + CH3OH ® CH4 + CH2OH k(T) = 2.146´10-27.T4.64.exp(-33.47[kJ/mol/RT), CH3 + CH3OH ® CH4 + CH3O k(T) = 2.583´10-27.T4.52.exp(-29.56[kJ/mol/RT), CH3 + CH3OH ® H + CH3OCH3 k(T) = 1.025´10-23.T3.16.exp(-186.84[kJ/mol/RT) When the reaction temperature is above 730 K, the abstraction process of H in –CH3 group of methanol will occur faster. The abstraction process of H in –OH group dominates when the reaction temperature is below 730 K. Keywords Kinetic, methyl, methanol, ab initio References 1. Slagle, I.R., D. Sarzynski, and D. Gutman, Kinetics of the reaction between methyl radicals and oxygen atoms between 294 and 900 K. The Journal of Physical Chemistry, 1987. 91(16): p. 4375-4379.2. Rutz L., B.H., Bozzelli J. W., Methyl Radical and Shift Reactions with Aliphatic and Aromatic Hydrocarbons: Thermochemical Properties, Reaction Paths and Kinetic Parameters. American Chemical Society, Division Fuel Chemistry, 2004. 49(1): p. 451-452.3. Johnson, D.G., M.A. Blitz, and P.W. Seakins, The reaction of methylidene (CH) with methanol isotopomers. Physical Chemistry Chemical Physics, 2000. 2(11): p. 2549-2553.4. Cribb, P.H., J.E. Dove, and S. Yamazaki, A kinetic study of the pyrolysis of methanol using shock tube and computer simulation techniques. Combustion and Flame, 1992. 88(2): p. 169-185.5. Dombrowsky, C., et al., An Investigation of the Methanol Decomposition Behind Incident Shock Waves. Berichte der Bunsengesellschaft für physikalische Chemie, 1991. 95(12): p. 1685-1687.6. Krasnoperov, L.N. and J.V. Michael, High-Temperature Shock Tube Studies Using Multipass Absorption: Rate Constant Results for OH + CH3, OH + CH2, and the Dissociation of CH3OH. The Journal of Physical Chemistry A, 2004. 108(40): p. 8317-8323.7. Shannon, T.W. and A.G. Harrison, The reaction of methyl radicals with methyl alcohol. Canadian Journal of Chemistry, 1963. 41(10): p. 2455-2461.8. Jodkowski, J.T., et al., Theoretical Study of the Kinetics of the Hydrogen Abstraction from Methanol. 3. Reaction of Methanol with Hydrogen Atom, Methyl, and Hydroxyl Radicals. The Journal of Physical Chemistry A, 1999. 103(19): p. 3750-3765.9. Alecu, I.M. and D.G. Truhlar, Computational Study of the Reactions of Methanol with the Hydroperoxyl and Methyl Radicals. 2. Accurate Thermal Rate Constants. The Journal of Physical Chemistry A, 2011. 115(51): p. 14599-14611.10. Peukert, S.L. and J.V. Michael, High-Temperature Shock Tube and Modeling Studies on the Reactions of Methanol with D-Atoms and CH3-Radicals. The Journal of Physical Chemistry A, 2013. 117(40): p. 10186-10195.11. Anastasi, C. and D.U. Hancock, Reaction of CH3 radicals with methanol in the range 525 <T/K < 603. Journal of the Chemical Society, Faraday Transactions, 1990. 86(14): p. 2553-2555.12. Dombrowsky, C. and H.G. Wagner, An investigation of the reaction between CH3 radicals and methanol at high temperatures. Berichte der Bunsengesellschaft für physikalische Chemie, 1989. 93(5): p. 633-637.13. Tsang, W., Chemical Kinetic Data Base for Combustion Chemistry. Part 2. Methanol. Journal of Physical and Chemical Reference Data, 1987. 16(3): p. 471-508.14. Becke, A.D., Density‐functional thermochemistry. II. The effect of the Perdew–Wang generalized‐gradient correlation correction. The Journal of Chemical Physics, 1992. 97(12): p. 9173-9177.15. Becke, A.D., Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of Chemical Physics, 1992. 96(3): p. 2155-2160.16. Becke, A.D., Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 1993. 98(7): p. 5648-5652.17. Yang, W., R.G. Parr, and C. Lee, Various functionals for the kinetic energy density of an atom or molecule. Physical Review A, 1986. 34(6): p. 4586-4590.18. Hehre W. , R.L., Schleyer P. V. R. , and Pople J. A. and 30, Ab Initio Molecular Orbital Theory. 1986, New York: Wiley.19. Andersson, M.P. and P. Uvdal, New Scale Factors for Harmonic Vibrational Frequencies Using the B3LYP Density Functional Method with the Triple-ζ Basis Set 6-311+G(d,p). The Journal of Physical Chemistry A, 2005. 109(12): p. 2937-2941.20. Raghavachari, K., et al., A fifth-order perturbation comparison of electron correlation theories. Chemical Physics Letters, 1989. 157(6): p. 479-483.21. M.J. Frisch, G.W.T., H.B. Schlegel, et al., GAUSSIAN 09, Revision C.01, Gaussian Inc., Wallingford CT, 2010.22. Robson Wright, M., Theories of Chemical Reactions, in An Introduction to Chemical Kinetics. 2005, John Wiley & Sons, Ltd. p. 99-164.23. Goos, E.B., A.; Ruscic, B., Extended Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables. http://garfield.chem.elte.hu/Burcat/burcat.html, October, 2017.
The pyrolysis of methanol was investigated behind incident shock waves at temperatures and densities between 1400 and 2200 K and 1 · 10−6 and 5 · 10−6 mol/cm3, respectively. Narrow band‐width laser absorption for OH radicals and ARAS technique for H atoms was used to determine the decomposition channels. For the experimental conditions described above the direct OH‐formation is found to be the main channel of about 80% of the decomposition rate. The channel leading to H and CH2OH is found to be less than 5%. There remains the possibility of channels leading from methanol to 1CH2 + H2O or to CH2O + H2.
Propane oxidation in jet‐stirred reactor was modeled using a comprehensive kinetic reaction mechanism including the most recent findings concerning the kinetics of the reactions involved in the oxidation of C1C4 hydrocarbons. The present detailed mechanism is able to reproduce experimental species concentration profiles obtained in our high‐pressure jet‐stirred reactor (900 ⩽ T/K ⩽ 1200; 1 ⩽ P/atm ⩽ 10; 0.15 ⩽ ϕ ⩽ 4) and in a turbulent flow reactor at 1 atm; ignition delay times measured in shock tube (1200 ⩽ T/K ⩽ 1700; 2 ⩽ P/atm ⩽ 15; 0.125 ⩽ ϕ ⩽ 2); H‐atoms concentrations measured in shock tube during the pyrolysis of propane and burning velocities of freely propagating premixed propane‐air laminar flames. The computed results are discussed in terms of pressure and equivalence ratio (ϕ) effects on propane oxidation. The same detailed kinetic reaction mechanism can also be used to model the oxidation of methane, ethylene, ethane, and propene in similar conditions. © John Wiley & Sons, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.