Additive manufacturing (AM) of polymers is a highly versatile technology that can be applied to many independent sectors like automotive, aviation, medicine, and dentistry. Since it has great potential for rapid prototyping, clean‐process concepts, and the ability to produce complex shapes, the layer‐by‐layer printing method is one of the most promising alternatives for future industrial production efforts. In that sense, different from the previous studies, this work aims to elucidate the friction and wear properties of the special dental samples manufactured via photopolymerization‐based AM technology according to both for printing parameters, and dry sliding test variables. Also, this is the first initiation to examine the combined influences of the UV exposure time, building direction, and sliding force on the surface roughness, hardness, friction coefficient, wear rate, and main plastic damage mechanism of the printed samples. The results showed that the maximum average hardness value was detected as 89.8 Shore D for vertically built samples printed with 8 s exposure time. In addition, vertically printed samples exhibited better wear resistance than the horizontal samples and the rising exposure time generally affected affirmatively the hardness levels of the samples. The lowest volume loss of 78 mm3 belonged to the vertical sample at 5 N. Further, increasing test force levels caused a decrease in the friction coefficient results and triggered the volume loss increase in the samples. Among all samples, the calculated friction coefficient values changed between 0.3 and 0.87. On the other side, scanning electron microscopy (SEM), and energy‐dispersive spectroscopy (EDS) analyses pointed out that ascending exposure times led to the altering contact surface matchings determining the final volume loss outcomes.Highlights
To obtain better surface quality, vertical printing was a useful option.
Horizontally printed samples exhibited higher friction coefficients.
Curing time positively impacted the wear resistance for both orientations.
Grooves and debris parts were observed on surfaces with low exposure times.