Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background/Objectives: One of the most abundant and growing neurodevelopmental disorders in recent decades is attention deficit hyperactivity disorder (ADHD). Many trials have been performed on using drugs for the improvement of ADHD signs. This study aimed to detect the possible interaction of naringin with Wnt/β-catenin signaling and its putative anti-inflammatory and protective effects in the mouse ADHD model based on bioinformatic, behavioral, and molecular investigations. Furthermore, molecular docking was applied to investigate possible interactions with the GSK-3β and HSP90 proteins. Methods: Male Swiss albino mice were divided into four groups, a normal control group, monosodium glutamate (SGL) control, SGL + naringin 50 mg/kg, and SGL + naringin 100 mg/kg. The psychomotor activity of the mice was assessed using the self-grooming test, rope crawling test, and attentional set-shifting task (ASST). In addition, biochemical analyses were performed using brain samples. Results: The results of the SGL group showed prolonged grooming time (2.47-folds), a lower percentage of mice with successful crawling on the rope (only 16.6%), and a higher number of trials for compound discrimination testing in the ASST (12.83 ± 2.04 trials versus 5.5 ± 1.88 trials in the normal group). Treatment with naringin (50 or 100 mg per kg) produced significant shortening in the grooming time (31% and 27% reductions), as well as a higher percentage of mice succeeding in crawling with the rope (50% and 83%, respectively). Moreover, the ELISA assays indicated decreased dopamine levels (0.36-fold) and increased TNF-α (2.85-fold) in the SGL control group compared to the normal mice, but an improvement in dopamine level was observed in the naringin (50 or 100 mg per kg)-treated groups (1.58-fold and 1.97-fold). Similarly, the PCR test showed significant declines in the expression of the Wnt (0.36), and β-catenin (0.33) genes, but increased caspase-3 (3.54-fold) and BAX (5.36-fold) genes in the SGL group; all these parameters were improved in the naringin 50 or 100 mg/kg groups. Furthermore, molecular docking indicated possible inhibition for HSP90 and GSK-3β. Conclusions: Overall, we can conclude that naringin is a promising agent for alleviating ADHD symptoms, and further investigations are required to elucidate its mechanism of action.
Background/Objectives: One of the most abundant and growing neurodevelopmental disorders in recent decades is attention deficit hyperactivity disorder (ADHD). Many trials have been performed on using drugs for the improvement of ADHD signs. This study aimed to detect the possible interaction of naringin with Wnt/β-catenin signaling and its putative anti-inflammatory and protective effects in the mouse ADHD model based on bioinformatic, behavioral, and molecular investigations. Furthermore, molecular docking was applied to investigate possible interactions with the GSK-3β and HSP90 proteins. Methods: Male Swiss albino mice were divided into four groups, a normal control group, monosodium glutamate (SGL) control, SGL + naringin 50 mg/kg, and SGL + naringin 100 mg/kg. The psychomotor activity of the mice was assessed using the self-grooming test, rope crawling test, and attentional set-shifting task (ASST). In addition, biochemical analyses were performed using brain samples. Results: The results of the SGL group showed prolonged grooming time (2.47-folds), a lower percentage of mice with successful crawling on the rope (only 16.6%), and a higher number of trials for compound discrimination testing in the ASST (12.83 ± 2.04 trials versus 5.5 ± 1.88 trials in the normal group). Treatment with naringin (50 or 100 mg per kg) produced significant shortening in the grooming time (31% and 27% reductions), as well as a higher percentage of mice succeeding in crawling with the rope (50% and 83%, respectively). Moreover, the ELISA assays indicated decreased dopamine levels (0.36-fold) and increased TNF-α (2.85-fold) in the SGL control group compared to the normal mice, but an improvement in dopamine level was observed in the naringin (50 or 100 mg per kg)-treated groups (1.58-fold and 1.97-fold). Similarly, the PCR test showed significant declines in the expression of the Wnt (0.36), and β-catenin (0.33) genes, but increased caspase-3 (3.54-fold) and BAX (5.36-fold) genes in the SGL group; all these parameters were improved in the naringin 50 or 100 mg/kg groups. Furthermore, molecular docking indicated possible inhibition for HSP90 and GSK-3β. Conclusions: Overall, we can conclude that naringin is a promising agent for alleviating ADHD symptoms, and further investigations are required to elucidate its mechanism of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.