The 2024 aluminum alloy is one of the high-quality lightweight materials. Friction stir welding (FSW) has shown advantages in reducing welding defects and improving welding quality in 2024 aluminum alloys. Currently, the research regarding FSW joint corrosion performance is mainly about the joint without plastic deformation. However, FSW joints often need to be formed into complex shapes by plastic deformation. The influence of plastic deformation on the corrosion performance of FSW joints is the focus of scientific research. To address this problem, the effect of high-temperature deformation on the mechanical properties and corrosion behavior of 2024 aluminum alloy joints was researched. The exfoliation corrosion test, scanning electron microscopy, energy-dispersive spectroscopy, and transmission electron microscopy were employed to analyze the corrosion mechanism and microstructure. The results show that high-temperature deformation of the weld nugget zone greatly affects the mechanical properties and corrosion behavior of the FSW joint. Compared with the 0% deformation specimen, the hardness and tensile strength of the 20% deformation FSW joint increased by 32% and 21%, respectively. The FSW joint with 20% deformation shows the best mechanical properties and corrosion resistance. The number of precipitated S’ phases of the FSW joint increases when the deformation increases to 20%, and the shape of the S’ phase is a regular round particle shape. The dislocation density of the FSW joint increases continuously during deformation, which provides a favorable nucleation location for the S’ phase.