The level of L‐ascorbic acid (AA) in various natural and artificial foods, medicines and other substances must be determined for biological and agricultural purposes. In this study, an AA‐imprinted poly (methacrylic acid)‐based receptor was synthesized by thermal free‐radical bulk polymerization for the detection of ascorbic acid using the methacrylic acid as monomer, ethylene glycol dimethacrylate (EGDMA) as cross‐linker, and azobisisobutyronitrile (AIBN) as initiator, in the presence of a porogenic solvent dimethyl sulfoxide (DMSO). The synthesized molecularly imprinted polymer (MIP) was used as a receptor. Immobilization of the receptor layer on IDEs provided a suitable sensor for AA detection by measuring changes in electrical parameters including inductance, capacitance, and resistance with the help of LCR meter. In the series and parallel inductance, the lowest detection limits were 0.13 and 0.001 ppm, respectively. While, for series and parallel capacitance, the lowest detection limits were 0.01548 and 1.3698 ppm, respectively. In the case of resistance, the lowest limit of detection was 0.0076 and 0.08121 ppm in series and parallel, respectively. The imprinted polymer‐based sensor showed sensitivity, selectivity, and reversibility for ascorbic acid.