We investigate the isoperimetric deficit of the oval domain in the Euclidean plane. Via the kinematic formulae of Poincaré and Blaschke, and Blaschke's rolling theorem, we obtain a sharp reverse Bonnesen-style inequality for a plane oval domain, which improves Bottema's result. Furthermore, we extend the isoperimetric deficit to the symmetric mixed isoperimetric deficit for two plane oval domains, and we obtain two reverse Bonnesen-style symmetric mixed inequalities, which are generalizations of Bottema's result and its strengthened form.