2014
DOI: 10.1016/j.pss.2014.04.006
|View full text |Cite
|
Sign up to set email alerts
|

An iterative method for obtaining a nonlinear solution for the temperature distribution of a rotating spherical body revolving in an eccentric orbit

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2015
2015
2015
2015

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 10 publications
0
1
0
Order By: Relevance
“…These include (i) an inhomogeneity of the thermal parameters (e.g., Vokrouhlický and Brož, 1999), (ii) a coupling of the diurnal and seasonal components of the Yarkovsky effect (e.g., Vokrouhlický, 1999;Shimoda, 2013, 2014), (iii) effects of a non-spherical shape for simple (e.g., Vokrouhlický, 1998b) or general geometries (including non-convex shapes and the role of small-scale surface features; Sec. 2.2), (iv) a non-linearity of the surface boundary condition of the thermal model (e.g., Shimoda, 2013, 2014), (v) the role of very high orbital eccentricity (e.g., Greenberg, 2001, 2002;Sekiya and Shimoda, 2014); (vi) a non-principal axis rotation state (e.g., Vokrouhlický et al, 2005a), or (vii) the Yarkovsky effect for binary asteroids (e.g., Vokrouhlický et al, 2005b).…”
Section: Classical Modelsmentioning
confidence: 99%

The Yarkovsky and YORP Effects

Vokrouhlicky,
Bottke,
Chesley
et al. 2015
Preprint
“…These include (i) an inhomogeneity of the thermal parameters (e.g., Vokrouhlický and Brož, 1999), (ii) a coupling of the diurnal and seasonal components of the Yarkovsky effect (e.g., Vokrouhlický, 1999;Shimoda, 2013, 2014), (iii) effects of a non-spherical shape for simple (e.g., Vokrouhlický, 1998b) or general geometries (including non-convex shapes and the role of small-scale surface features; Sec. 2.2), (iv) a non-linearity of the surface boundary condition of the thermal model (e.g., Shimoda, 2013, 2014), (v) the role of very high orbital eccentricity (e.g., Greenberg, 2001, 2002;Sekiya and Shimoda, 2014); (vi) a non-principal axis rotation state (e.g., Vokrouhlický et al, 2005a), or (vii) the Yarkovsky effect for binary asteroids (e.g., Vokrouhlický et al, 2005b).…”
Section: Classical Modelsmentioning
confidence: 99%

The Yarkovsky and YORP Effects

Vokrouhlicky,
Bottke,
Chesley
et al. 2015
Preprint