2021
DOI: 10.21203/rs.3.rs-526234/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

An LSTM and GRU based Trading Strategy Adapted to the Moroccan Market

Abstract: Forecasting stock prices is an extremely challenging job considering the high volatility and the number of variables that influence it (political, economical, social, etc.). Predicting the closing price provides useful information and helps the investor to make the right decision. The use of deep learning and more precisely the recurrent neural networks RNNs in stock market forecasting is an increasingly common practice in the literature. The Long Short Term Memory LSTM and Gated Recurrent Unit GRU architectur… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?