The importance of clinical outcome prediction models using artificial intelligence (AI) is being emphasized owing to the increasing necessity of developing a clinical decision support system (CDSS) employing AI. Therefore, in this study, we proposed a "Dr. Answer" AI software based on the clinical outcome prediction model for prostate cancer treated with radical prostatectomy. Methods The Dr. Answer AI was developed based on a clinical outcome prediction model, with a user-friendly interface. We used 7,128 clinical data of prostate cancer treated with radical prostatectomy from three hospitals. An outcome prediction model was developed to calculate the probability of occurrence of 1) tumor, node, and metastasis (TNM) staging, 2) extracapsular extension, 3) seminal vesicle invasion, and 4) lymph node metastasis. Random forest and k-nearest neighbors algorithms were used, and the proposed system was compared with previous algorithms. Results Random forest exhibited good performance for TNM staging (recall value: 76.98%), while knearest neighbors exhibited good performance for extracapsular extension, seminal vesicle invasion, and lymph node metastasis (80.24%, 98.67%, and 95.45%, respectively). The Dr. Answer AI software consisted of three primary service structures: 1) patient information, 2) clinical outcome prediction, and outcomes according to the National Comprehensive Cancer Network guideline.