One of the main hurdles of PGAS approaches is the dominance of MPI, which as a de-facto standard appears in the code basis of many applications. To take advantage of the PGAS APIs like GASPI without a major change in the code basis, interoperability between MPI and PGAS approaches needs to be ensured. In this article we consider an interoperable GASPI/MPI implementation for the communication/performance crucial parts of the Ludwig and iPIC3D applications. To address the discovered performance limitations, we develop a novel strategy for significantly improved performance and interoperability between both APIs by leveraging GASPI shared windows and shared notifications. First results with a corresponding implementation in the MiniGhost proxy application demonstrate the viability of this approach.