2022
DOI: 10.21203/rs.3.rs-1934688/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

An NLP-Assisted Bayesian Time Series Analysis for Prevalence of Twitter Cyberbullying During the COVID-19 Pandemic

Abstract: COVID-19 has brought about many changes in social dynamics. Stay-at-home orders and disruptions in school teaching can influence bullying behavior in-person and online, both of which leading to negative outcomes in victims. To study cyberbullying specifically, 1 million tweets containing keywords associated with abuse were collected from the beginning of 2019 to the end of 2021 with the Twitter API search endpoint. A natural language processing model pre-trained on a Twitter corpus generated probabilities for … Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 36 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?