Nowadays, the Database Management Systems (DBMS) must be able to manage complex data, such as multimedia data, genetic sequences, temporal series, besides the traditional data. For queries on large collections of complex data, the similarity among elements is the most relevant concept, and it can be adequately expressed when data are represented in metric spaces. Regardless of the data domain, there are applications that must tracking the evolution of data over time However, the existing Metric Access Methods assume that the data elements are immutable. Aiming at both treating time and allowing changes in metric data, the work presented in this thesis consisted of two main parts. The first part addresses the inclusion of the operations for element remotion and updating in metric access methods. These operations are meant to application domains that work with metric data that changes over time, regardless of the needed to manage temporal information. A new method for metric trees optimization was also developed in this part of the work. It was based on the proposed remotion algorithm. The second part of the thesis addresses including the temporal evolution concept in data represented in metric spaces. The Metric-Temporal Space was proposed, a representation model to allow comparing elements consisting of metric data with temporal information associated. The model includes a method to identify the relative contributions of the temporal and the metric components in the final similarity calculation. Strategies for trajectory analysis of metric data over time was also presented, through the immersion of metric-temporal spaced in dimensional spaces. Finally, a new method for weighting multiple image descriptors was presented. It was derived from changes in the proposed method to identify the contributions of the components of the metric-temporal space.