In recent years, a wealth of Drosophila neuroscience data have become available. These include cell type, connectome and synaptome datasets for both the larva and adult fly. To facilitate integration across data modalities and to accelerate the understanding of the functional logic of the fly brain, we developed an interactive computing environment called FlyBrainLab.FlyBrainLab is uniquely positioned towards accelerating the discovery of the functional logic of the Drosophila brain. Its interactive open source architecture seamlessly integrates and brings together computational models with neuroanatomical, neurogenetic and electrophysiological data, changing the organization of neuroscientific fly brain data from a group of unconnected databases, arrays and tables, to a well structured data and executable circuit repository. The FlyBrainLab User Interface supports a highly intuitive and automated workflow that streamlines the 3D exploration and visualization of fly brain circuits, and the interactive exploration of the functional logic of executable circuits created directly from the explored and visualized fly brain data.FlyBrainLab methodologically supports the efficient comparison of fly brain circuit models, across model instances developed by different researchers, across different developmental stages of the fruit fly and across different datasets. The FlyBrainLab Utility and Circuit Libraries accelerate the creation of models of executable circuits. The Utility Libraries help untangle the graph structure of neural circuits from raw connectome and synaptome data. The Circuit Libraries facilitate the exploration of neural circuits of the neuropils of the central complex and, the development and implementation of models of the adult and larva fruit fly early olfactory systems.To elevate its executable circuit construction capability beyond the connectome, FlyBrainLab provides additional libraries for molecular transduction arising in sensory coding in vision and olfaction. Together with sensory neuron activity data, these libraries serve as entry points for discovering circuit function in the sensory systems of the fruit fly brain. They also enable the biological validation of developed executable circuits within the same platform.