Deadenylation is an intimate part of the post-transcriptional regulation of maternal mRNAs in embryos. EDEN-BP is so far the only known member of a complex regulating the deadenylation of maternal mRNA in Xenopus laevis embryos in a manner that is dependent on the 3′-untranslated region called EDEN (embryo deadenylation element). In this report, we show that calcium activation of cell-free extracts triggers EDEN binding protein(EDEN-BP) dephosphorylation and concomitant deadenylation of a chimeric RNA bearing Aurora A/Eg2 EDEN sequence. Deadenylation of mRNA deprived of EDEN sequence (default deadenylation) does not change with egg activation. Kinase and phosphatase inhibitors downregulate EDEN-dependent deadenylation but they do not substantially influence default deadenylation. Using indestructibleΔ90 cyclin B to revert interphase extracts to the M-phase, we show that modulation of EDEN-dependent deadenylation is independent of M-phase promoting factor (MPF) activity. These results suggest that the increase in EDEN-dependent deadenylation following egg activation is achieved, at least partially, via dephosphorylation and/or phosphorylation of regulatory proteins, including EDEN-BP dephosphorylation. This regulation proceeds in a manner independent from MPF inactivation.