Hgt1p, a member of the oligopeptide transporter family, is a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. We have explored the role of polar or charged residues in the putative transmembrane domains of Hgt1p to obtain insights into the structural features of Hgt1p that govern its substrate specificity. A total of 22 charged and polar residues in the predicted transmembrane domains and other conserved regions were subjected to alanine mutagenesis. Functional characterization of these 22 mutants identified 11 mutants which exhibited significant loss in functional activity. All 11 mutants except T114A had protein expression levels comparable with wild type, and all except E744A were proficient in trafficking to the cell surface. Kinetic analyses revealed differential contributions toward the functional activity of Hgt1p by these residues and identified Asn-124 in transmembrane domain 1 (TMD1), Gln-222 in TMD4, Gln-526 in TMD9, and Glu-544, Arg-554, and Lys-562 in the intracellular loop region 537-568 containing the highly conserved proline-rich motif to be essential for the transport activity of the protein. Furthermore, mutants Q222A and Q526A exhibited a nearly 4-and 8-fold increase in the K m for glutathione. Interestingly, although Gln-222 is widely conserved among other functionally characterized oligopeptide transporter family members including those having a different substrate specificity, Gln-526 is present only in Hgt1p and Pgt1, the only two known high affinity glutathione transporters. These results provide the first insights into the substrate recognition residues of a high affinity glutathione transporter and on residues/helices involved in substrate translocation in the structurally uncharacterized oligopeptide transporter family.Hgt1p or ScOpt1p, a polytopic membrane protein, from the yeast Saccharomyces cerevisiae, was the first high affinity glutathione transporter to be identified in any system (1). Hgt1p belongs to a relatively novel family of transporters, the oligopeptide transporter (OPT) 3 family, that contains a large number of fungal, plant, and prokaryotic members (2). The functional characterizations of a few of the fungal and plants members have demonstrated their ability to transport oligopeptides, glutathione, and metal-secondary amino acid conjugates by harnessing the proton gradient across the plasma membrane (3-7). Furthermore, these studies have also highlighted the physiological significance of this family in assimilation/mobilization of oligopeptides as nutrients in fungi and plants and in maintenance of metal homeostasis in plants. However, the majority of the members are yet uncharacterized and need to be defined with respect to their substrate specificity and physiological role.A complete lack of information on the structural features of the OPT family further limits our understanding of this large, uncharacterized family. Identification of residues or motifs critical for substrate recognition among the functionally characterized members woul...