Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine.NA sequencing has opened new windows of opportunities for diagnosis of genetic disease (1), biological informatics (2), forensics (3), and environmental monitoring (4). Discrimination of a single mismatch in a long DNA strand is of significant importance and is essential to detect single nucleotide polymorphism (SNP). SNP is a single-nucleotide mutation in a gene sequence and varies among paired chromosomes, between individuals, and across biological species. SNP mutations can have dramatic influence on the health. They are markers for variety of diseases, including various forms of cancer, genetic disorders (5-7), and are of critical importance for successful practical implementation of the concept of personalized medicine (8). Thus, the development of biosensors detecting SNP mutations with high sensitivity and specificity is essential for effective personalized medicine approaches.Current DNA sequencing, including SNP detection, is achieved primarily by enzyme-based methods, using DNA ligase (9), DNA polymerase (9), and nucleases (10). These methods generate highly accurate genotyping. However, the methods are expensive and time-consuming. One of the common enzyme-free methods to detect SNPs uses hybridization of the target DNA to a probe on a microarray and detects their binding events with fluorescence microscopy/spectroscopy. Hybridization-based methods for SNP detection have several disadvantages, including cross-hybridization between allele-specific probes (11). This limits the detection of a single mismatch in long probe-target hybridization as the longer probes have more frequent cross hybridization. For example, a single mismatch in the center o...