“…The benefits categorized as intelligent services are: learning management system (Lavoie and Proulx, 2019), semantic recommendation using ontology (Sharma and Ahuja, 2016); hybrid recommendation based on student profile (Kapembe and Quenum, 2019); deep reinforcement learning structure (Huang et al, 2019); decision-making system (El Fouki et al, 2017), content-based recommendation system (Venugopalan et al, 2016), domain-specific language (Balderas et al, 2013), WAVE architecture (Manhães et al, 2014), intelligent teaching assistant system (Wang et al, 2019), profile analysis system (El Moustamid et al, 2017), algorithm based on the technique of optimizing ant colonies (Kozierkiewicz-Hetmańska and Zyśk, 2013), prototype indicators (Florian et al, 2011), online learning systems based on big data technologies (Dahdouh et al, 2018), agentbased recommendation system, Java2D technology-based e-learning system (Hamada, 2012), ID based recommendation system (Zakrzewska, 2012;Anaya et al, 2013), capture system (Lagman and Mansul, 2017), custom model (Chanaa and Faddouli, 2018), ontology model (Joy et al, 2019), evaluation tool (Dimopoulos et al, 2013), adaptive recommendation method (Chen et al, 2020), Kernel Context Recommendender System algorithm (Iqbal et al, 2019), distributed course recommendation systems (Dahdouh et al, 2019), custom user interface (Kolekar et al, 2018), recommendation system techniques for educational data mining (Thai-Nghe et al, 2010), individualized artificial intelligence tutor and LBA model (Kim and Kim, 2020) based on a system called SBAN (Zaoudi and Belhadaoui, 2020). The application of methods and techniques of data analysis provide student grade prediction, behavior pattern detection, academic progress forecasting, modeling, course dropout risk prediction, also providing student performance feedback to teachers.…”